
C H A P T E R

Complexity Classes

In an ideal world, each computational problem would be classified at least approximately by its
use of computational resources. Unfortunately, our ability to so classify some important prob-
lems is limited. We must be content to show that such problems fall into general complexity
classes, such as the polynomial-time problems P, problems whose running time on a determin-
istic Turing machine is a polynomial in the length of its input, or NP, the polynomial-time
problems on nondeterministic Turing machines.

Many complexity classes contain “complete problems,” problems that are hardest in the
class. If the complexity of one complete problem is known, that of all complete problems is
known. Thus, it is very useful to know that a problem is complete for a particular complexity
class. For example, the class of NP-complete problems, the hardest problems in NP, contains
many hundreds of important combinatorial problems such as the Traveling Salesperson Prob-
lem. It is known that each NP-complete problem can be solved in time exponential in the size
of the problem, but it is not known whether they can be solved in polynomial time. Whether

P and NP are equal or not is known as the P
?
= NP question. Decades of research have been

devoted to this question without success. As a consequence, knowing that a problem is NP-
complete is good evidence that it is an exponential-time problem. On the other hand, if one
such problem were shown to be in P, all such problems would be been shown to be in P, a
result that would be most important.

In this chapter we classify problems by the resources they use on serial and parallel ma-
chines. The serial models are the Turing and random-access machines. The parallel models
are the circuit and the parallel random-access machine (PRAM). We begin with a discussion
of tasks, machine models, and resource measures, after which we examine serial complexity
classes and relationships among them. Complete problems are defined and the P-complete,
NP-complete, and PSPACE-complete problems are examined. We then turn to the PRAM
and circuit models and conclude by identifying important circuit complexity classes such as
NC and P/poly.
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8.1 Introduction
The classification of problems requires a precise definition of those problems and the com-
putational models used. Problems are accurately classified only when we are sure that they
have been well defined and that the computational models against which they are classified are
representative of the computational environment in which these problems will be solved. This
requires the computational models to be general. On the other hand, to be useful, problem
classifications should not be overly dependent on the characteristics of the machine model used
for classification purposes. For example, because of the obviously inefficient use of memory on
the Turing machine, the set of problems that runs in time linear in the length of their input on
a random-access machine is likely to be different from the set that runs in linear time on the
Turing machine. On the other hand, the set of problems that run in polynomial time on both
machines is the same.

8.2 Languages and Problems
Before formally defining decision problems, a major topic of this chapter, we give two examples
of them, SATISFIABILITY and UNSATISFIABILITY. A set of clauses is satisfiable if values can
be assigned to Boolean variables in these clauses such that each clause has at least one literal
with value 1.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if for some assignment of Boolean values to variables in {x1, x2, . . . , xn}, at
least one literal in each clause has value 1.

The complement of the decision problem SATISFIABILITY, UNSATISFIABILITY, is defined
below.

UNSATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if for all assignments of Boolean values to variables in {x1, x2, . . . , xn}, all
literals in at least one clause have value 0.

The clauses C1 = ({x1, x2, x3}, {x1, x2}, {x2, x3}) are satisfied with x1 = x2 = x3 = 1,
whereas the clauses C2 = ({x1, x2, x3}, {x1, x2}, {x2, x3}, {x3, x1}, {x1, x2, x3}) are not
satisfiable. SATISFIABILITY consists of collections of satisfiable clauses. C1 is in SATISFIABIL-
ITY. The complement of SATISFIABILITY, UNSATISFIABILITY, consists of instances of clauses
not all of which can be satisfied. C2 is in UNSATISFIABILITY.

We now introduce terminology used to classify problems. This terminology and the asso-
ciated concepts are used throughout this chapter.

DEFINITION 8.2.1 Let Σ be an arbitrary finite alphabet. A decision problem P is defined by a
set of instances I ⊆ Σ∗ of the problem and a condition φP : I "→ B that has value 1 on “Yes”
instances and 0 on “No” instances. Then Iyes = {w ∈ I |φP(w) = 1} are the “Yes” instances.
The “No” instances are Ino = I − Iyes.



c©John E Savage 8.2 Languages and Problems 329

The complement of a decision problem P , denoted coP , is the decision problem in which
the “Yes” instances of coP are the “No” instances of P and vice versa.

The “Yes” instances of a decision problem are encoded as binary strings by an encoding func-
tion σ : Σ∗ "→ B∗ that assigns to each w ∈ I a string σ(w) ∈ B∗.

With respect to σ, the language L(P) associated with a decision problem P is the set
L(P) = {σ(w) |w ∈ Iyes}. With respect to σ, the language L(coP) associated with coP is the
set L(coP) = {σ(w) |w ∈ Ino}.

The complement of a language L, denoted L, is B∗ − L; that is, L consists of the strings
that are not in L.

A decision problem can be generalized to a problem P characterized by a function f : B∗ "→
B∗ described by a set of ordered pairs (x, f(x)), where each string x ∈ B∗ appears once as the
left-hand side of a pair. Thus, a language is defined by problems f : B∗ "→ B and consists of the
strings on which f has value 1.

SATISFIABILITY and all other decision problems in NP have succinct “certificates” for
“Yes” instances, that is, choices on a nondeterministic Turing machine that lead to acceptance
of a “Yes” instance in a number of steps that is a polynomial in the length of the instance. A
certificate for an instance of SATISFIABILITY consists of values for the variables of the instance
on which each clause has at least one literal with value 1. The verification of such a certificate
can be done on a Turing machine in a number of steps that is quadratic in the length of the
input. (See Problem 8.3.)

Similarly, UNSATISFIABILITY and all other decision problems in coNP can be disqualified
quickly; that is, their “No” instances can be “disqualified” quickly by exhibiting certificates for
them (which are certificates for the “Yes” instance of the complementary decision problem).
For example, a disqualification for UNSATISFIABILITY is a satisfiable assignment for a “No”
instance, that is, a satisfiable set of clauses.

It is not known how to identify a certificate for a “Yes” instance of SATISFIABILITY or any
other NP-complete problem in time polynomial in length of the instance. If a “Yes” instance
has n variables, an exhaustive search of the 2n values for the n variables is about the best general
method known to find an answer.

8.2.1 Complements of Languages and Decision Problems
There are many ways to encode problem instances. For example, for SATISFIABILITY we
might represent xi as i and xi as ∼i and then use the standard seven-bit ASCII encodings for
characters. Then we would translate the clause {x4, x7} into {4,∼7} and then represent it as
123 052 044 126 055 125, where each number is a decimal representing a binary 7-tuple and
4, comma, and ∼ are represented by 052, 044, and 126, respectively, for example.

All the instances I of decision problems P considered in this chapter are characterized
by regular expressions. In addition, the encoding function of Definition 8.2.1 can be chosen
to map strings in I to binary strings σ(I) describable by regular expressions. Thus, a finite-
state machine can be used to determine if a binary string is in σ(I) or not. We assume that
membership of a string in σ(I) can be determined efficiently.

As suggested by Fig. 8.1, the strings in L(P), the complement of L(P), are either strings
in L(coP) or strings in σ(Σ∗ − I). Since testing of membership in σ(Σ∗ − I) is easy, testing
for membership in L(P) and L(coP) requires about the same space and time. For this reason,
we often equate the two when discussing the complements of languages.
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σ(Σ∗ − I)
Encodings of Instances

L(coP)
L(P)

Figure 8.1 The language L(P) of a decision problem P and the language of its complement
L(coP). The languages L(P) and L(coP) encode all instances of I . The complement of L(P),
L(P), is the union of L(coP) with σ(Σ∗ − I), strings that are in neither L(P) nor L(coP).

8.3 Resource Bounds
One of the most important problems in computer science is the identification of the computa-
tionally feasible problems. Currently a problem is considered feasible if its running time on a
DTM (deterministic Turing machine) is polynomial. (Stated by Edmonds [95], this is known
as the serial computation thesis.) Note, however, that some polynomial running times, such
as n1000, where n is the length of a problem instance, can be enormous. In this case doubling
n increases the time bound by a factor of 21000, which is approximately 10301!

Since problems are classified by their use of resources, we need to be precise about resource
bounds. These are functions r : "→ from the natural numbers = {0, 1, 2, 3, . . .} to
the natural numbers. The resource functions used in this chapter are:

Logarithmic function r(n) = O(log n)

Poly-logarithmic function r(n) = logO(1) n
Linear function r(n) = O(n)
Polynomial function r(n) = nO(1)

Exponential function r(n) = 2nO(1)

A resource function that grows faster than any polynomial is called a superpolynomial func-

tion. For example, the function f(n) = 2log2 n grows faster than any polynomial (the ratio
log f(n)/ log n is unbounded) but more slowly than any exponential (for any k > 0 the ratio
(log2 n)/nk becomes vanishingly small with increasing n).

Another note of caution is appropriate here when comparing resource functions. Even
though one function, r(n), may grow more slowly asymptotically than another, s(n), it may

still be true that r(n) > s(n) for very large values of n. For example, r(n) = 10 log4 n >
s(n) = n for n ≤ 1,889,750 despite the fact that r(n) is much smaller than s(n) for large n.

Some resource functions are so complex that they cannot be computed in the time or space
that they define. For this reason we assume throughout this chapter that all resource functions
are proper. (Definitions of time and space on Turing machines are given in Section 8.4.2.)

DEFINITION 8.3.1 A function r : "→ is proper if it is nondecreasing (r(n + 1) ≥ r(n))
and for some tape symbol a there is a deterministic multi-tape Turing machine M that, on all
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inputs of length n in time O(n+ r(n)) and temporary space r(n), writes the string ar(n) (unary
notation for r(n)) on one of its tapes and halts.

Thus, if a resource function r(n) is proper, there is a DTM, Mr, that given an input of length
n can write r(n) markers on one of its tapes within time O(n+r(n)) and space r(n). Another
DTM, M , can use a copy of Mr to mark r(n) squares on a tape that can be used to stop M
after exactly Kr(n) steps for some constant K. The resource function can also be used to
insure that M uses no more than Kr(n) cells on its work tapes.

8.4 Serial Computational Models
We consider two serial computational models in this chapter, the random-access machine
(RAM) introduced in Section 3.4 and the Turing machine defined in Chapter 5.

In this section we show that, up to polynomial differences in running time, the random-
access and Turing machines are equivalent. As a consequence, if the running time of a problem
on one machine grows at least as fast as a polynomial in the length of a problem instance, then
it grows equally fast on the other machine. This justifies using the Turing machine as basis for
classifying problems by their serial complexity.

In Sections 8.13 and 8.14 we examine two parallel models of computation, the logic circuit
and the parallel random-access machine (PRAM).

Before beginning our discussion of models, we note that any model can be considered
either serial or parallel. For example, a finite-state machine operating on inputs and states
represented by many bits is a parallel machine. On the other hand, a PRAM that uses one
simple RAM processor is serial.

8.4.1 The Random-Access Machine
The random-access machine (RAM) is introduced in Section 3.4. (See Fig. 8.2.) In this section
we generalize the simulation results developed in Section 3.7 by considering a RAM in which
words are of potentially unbounded length. This RAM is assumed to have instructions for

ALU

rega

regb

CPU

cmd

Random-Access Memory

Decode

prog ctr

out wrd

in wrd

addr

Figure 8.2 A RAM in which the number and length of words are potentially unbounded.
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addition, subtraction, shifting left and right by one place, comparison of words, and Boolean
operations of AND, OR, and NOT (the operations are performed on corresponding components
of the source vectors), as well as conditional and unconditional jump instructions. The RAM
also has load (and store) instructions that move words to (from) registers from (to) the random-
access memory. Immediate and direct addressing are allowed. An immediate address contains
a value, a direct address is the address of a value, and an indirect address is the address of
the address of a value. (As explained in Section 3.10 and stated in Problem 3.10, indirect
addressing does not add to the computing power of the RAM and is considered only in the
problems.)

The time on a RAM is the number of steps it executes. The space is the maximum number
of bits of storage used either in the CPU or the random-access memory during a computation.

We simplify the RAM without changing its nature by eliminating its registers, treating
location 0 of the random-access memory as the accumulator, and using memory locations as
registers. The RAM retains its program counter, which is incremented on each instruction
execution (except for a jump instruction, when its value is set to the address supplied by the
jump instruction). The word length of the RAM model is typically allowed to be unlimited,
although in Section 3.4 we limited it to b bits. A RAM program is a finite sequence of RAM
instructions that is stored in the random-access memory. The RAM implements the stored-
program concept described in Section 3.4.

In Theorem 3.8.1 we showed that a b-bit standard Turing machine (its tape alphabet con-
tains 2b characters) executing T steps and using S bits of storage (S/b words) can be simulated
by the RAM described above in O(T ) steps with O(S) bits of storage. Similarly, we showed
that a b-bit RAM executing T steps and using S bits of memory can be simulated by an O(b)-
bit standard Turing machine in O(ST log2 S) steps and O(S log S) bits of storage. As seen
in Section 5.2, T -step computations on a multi-tape TM can be simulated in O(T 2) steps on
a standard Turing machine.

If we could insure that a RAM that executes T steps uses a highest address that is O(T ) and
generates words of fixed length, then we could use the above-mentioned simulation to establish
that a standard Turing machine can simulate an arbitrary T -step RAM computation in time
O(T 2 log2 T ) and space O(S log S) measured in bits. Unfortunately, words can have length
proportional to O(T ) (see Problem 8.4) and the highest address can be much larger than T due
to the use of jumps. Nonetheless, a reasonably efficient polynomial-time simulation of a RAM
computation by a DTM can be produced. Such a DTM places one (address, contents)
pair on its tape for each RAM memory location visited by the RAM. (See Problem 8.5.)

We leave the proof of the following result to the reader. (See Problem 8.6.)

THEOREM 8.4.1 Every computation on the RAM using time T can be simulated by a deterministic
Turing machine in O(T 3) steps.

In light of the above results and since we are generally interested in problems whose time
is polynomial in the length of the input, we use the DTM as our model of serial computation.

8.4.2 Turing Machine Models
The deterministic and nondeterministic Turing machines (DTM and NDTM) are discussed
in Sections 3.7, 5.1, and 5.2. (See Fig. 8.3.) In this chapter we use multi-tape Turing machines
to define classes of problems characterized by their use of time and space. As shown in The-
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Figure 8.3 A one-tape nondeterministic Turing machine whose control unit has an external
choice input that disambiguates the value of its next state.

orem 5.2.2, the general language-recognition capability of DTMs and NDTMs is the same,
although, as we shall see, their ability to recognize languages within the same resource bounds
is very different.

We recognize two types of Turing machine, the standard one-tape DTM and NDTM and
the multi-tape DTM and NDTM. The multi-tape versions are defined here to have one read-
only input tape, one write-only output tape, and one or more work tapes. The space on these
machines is defined to be the number of work tape cells used during a computation. This
measure allows us to classify problems by a storage that may be less than linear in the size of
the input. Time is the number of steps they execute. It is interesting to compare these measures
with those for the RAM. (See Problem 8.7.) As shown on Section 5.2, we can assume without
loss of generality that each NDTM has either one or two choices for next state for any given
input letters and state.

As stated in Definitions 3.7.1 and 5.1.1, a DTM M accepts the language L if and only if
for each string in L placed left-adjusted on the otherwise blank input tape it eventually enters
the accepting halt state. A language accepted by a DTM M is recursive if M halts on all
inputs. Otherwise it is recursively enumerable. A DTM M computes a partial function f
if for each input string w for which f is defined, it prints f(w) left-adjusted on its otherwise
blank output tape. A complete function is one that is defined on all points of its domain.

As stated in Definition 5.2.1, an NDTM accepts the language L if for each string w in
L placed left-adjusted on the otherwise blank input tape there is a choice input c for M that
leads to an accepting halt state. A NDTM M computes a partial function f : B∗ "→ B∗ if
for each input string w for which f is defined, there is a sequence of moves by M that causes
it to print f(w) on its output tape and enter a halt state and there is no choice input for which
M prints an incorrect result.

The oracle Turing machine (OTM), the multi-tape DTM or NDTM with a special oracle
tape, defined in Section 5.2.3, is used to classify problems. (See Problem 8.15.) Time on an
OTM is the number of steps it takes, where one consultation of the oracle is one step, whereas
space is the number of cells used on its work tapes not including the oracle tape.



334 Chapter 8 Complexity Classes Models of Computation

A precise Turing machine M is a multi-tape DTM or NDTM for which there is a func-
tion r(n) such that for every n ≥ 1, every input w of length n, and every (possibly nondeter-
ministic) computation by M , M halts after precisely r(n) steps.

We now show that if a total function can be computed by a DTM, NDTM, or OTM
within a proper time or space bound, it can be computed within approximately the same
resource bound by a precise TM of the same type. The following theorem justifies the use of
proper resource functions.

THEOREM 8.4.2 Let r(n) be a proper function with r(n) ≥ n. Let M be a multi-tape DTM,
NDTM, or OTM with k work tapes that computes a total function f in time or space r(n). Then
there is a constant K > 0 and a precise Turing machine of the same type that computes f in time
and space Kr(n).

Proof Since r(n) is a proper function, there is a DTM Mr that computes its value from an
input of length n in time K1r(n) for some constant K1 > 0 and in space r(n). We design
a precise TM Mp computing the same function.

The TM Mp has an “enumeration tape” that is distinct from its work tapes. Mp initially
invokes Mr to write r(n) instances of the letter a on the enumeration tape in K1r(n) steps,
after which it returns the head on this tape to its initial position.

Suppose that M computes f within a time bound of r(n). Mp then alternates between
simulating one step of M on its work tapes and advancing its head on the enumeration
tape. When M halts, Mp continues to read and advance the head on its enumeration tape
on alternate steps until it encounters a blank. Clearly, Mp halts in precisely (K1 + 2)r(n)
steps.

Suppose now that M computes f in space r(n). Mp invokes Mr to write r(n) special
blank symbols on each of its work tapes. It then simulates M , treating the special blank
symbols as standard blanks. Thus, Mp uses precisely kr(n) cells on its k work tapes.

Configuration graphs, defined in Section 5.3, are graphs that capture the state of Turing
machines with potentially unlimited storage capacity. Since all resource bounds are proper, as
we know from Theorem 8.4.2, all DTMs and NDTMs used for decision problems halt on all
inputs. Furthermore, NDTMs never give an incorrect answer. Thus, configuration graphs can
be assumed to be acyclic.

8.5 Classification of Decision Problems
In this section we classify decision problems by the resources they consume on deterministic
and nondeterministic Turing machines. We begin with the definition of complexity classes.

DEFINITION 8.5.1 Let r(n) : "→ be a proper resource function. Then TIME(r(n)) and
SPACE(r(n)) are the time and space Turing complexity classes containing languages that
can be recognized by DTMs that halt on all inputs in time and space r(n), respectively, where n is
the length of an input. NTIME(r(n)) and NSPACE(r(n)) are the nondeterministic time
and space Turing complexity classes, respectively, defined for NDTMs instead of DTMs. The
union of complexity classes is also a complexity class.

Let k be a positive integer. Then TIME(kn) and NSPACE(nk) are examples of complexity
classes. They are the decision problems solvable in deterministic time kn and nondeterministic
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space nk, respectively, for n the length of the input. Since time and space on a Turing machine
are measured by the number of steps and number of tape cells, it is straightforward to show
that time and space for a given Turing machine, deterministic or not, can each be reduced by
a constant factor by modifying the Turing machine description so that it acts on larger units
of information. (See Problem 8.8.) Thus, for a constant K > 0 the following classes are the
same: a) TIME(kn) and TIME(Kkn), b) NTIME(kn) and NTIME(Kkn), c) SPACE(nk)
and SPACE(Knk), and d) NSPACE(nk) and NSPACE(Knk).

To emphasize that the union of complexity classes is another complexity class, we define
as unions two of the most important Turing complexity classes, P, the class of deterministic
polynomial-time decision problems, and NP, the class of nondeterministic polynomial-time
decision problems.

DEFINITION 8.5.2 The classes P and NP are sets of decision problems solvable in polynomial time
on DTMs and NDTMs, respectively; that is, they are defined as follows:

P =
⋃

k≥0

TIME(nk)

NP =
⋃

k≥0

NTIME(nk)

Thus, for each decision problem P in P there is a DTM M and a polynomial p(n) such
that M halts on each input string of length n in p(n) steps, accepting this string if it is an
instance w of P and rejecting it otherwise.

Also, for each decision problem P in NP there is an NDTM M and a polynomial p(n)
such that for each instance w of P , |w| = n, there is a choice input of length p(n) such that
M accepts w in p(n) steps.

Problems in P are considered feasible problems because they can be decided in time poly-
nomial in the length of their input. Even though some polynomial functions, such as n1000,
grow very rapidly in their one parameter, at the present time problems in P are considered
feasible. Problems that require exponential time are not considered feasible.

The class NP includes the decision problems associated with many hundreds of important
searching and optimization problems, such as TRAVELING SALESPERSON described below.
(See Fig. 8.4.) If P is equal to NP, then these important problems have feasible solutions. If
not, then there are problems in NP that require superpolynomial time and are therefore largely

infeasible. Thus, it is very important to have the answer to the question P
?
= NP.

TRAVELING SALESPERSON

Instance: An integer k and a set of n2 symmetric integer distances {di,j | 1 ≤ i, j ≤ n}
between n cities where di,j = dj,i.
Answer: “Yes” if there is a tour (an ordering) {i1, i2, . . . , in} of the cities such that the
length l = di1,i2 + di2,i3 + · · · + din,i1 of the tour satisfies l ≤ k.

The TRAVELING SALESPERSON problem is in NP because a tour satisfying l ≤ k can
be chosen nondeterministically in n steps and the condition l ≤ k then verified in a polyno-
mial number of steps by finding the distances between successive cities on the chosen tour in
the description of the problem and adding them together. (See Problem 3.24.) Many other
important problems are in NP, as we see in Section 8.10. While it is unknown whether a
deterministic polynomial-time algorithm exists for this problem, it can clearly be solved deter-
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Figure 8.4 A graph on which the TRAVELING SALESPERSON problem is defined. The heavy
edges identify a shortest tour.

ministically in exponential time by enumerating all tours and choosing the one with smallest
length. (See Problem 8.9.)

The TRAVELING SALESPERSON decision problem is a reduction of the traveling sales-
person optimization problem, whose goal is to find the shortest tour that visits each city
once. The output of the optimization problem is an ordering of the cities that has the short-
est tour. By contrast, the TRAVELING SALESPERSON decision problem reports that there is
or is not a tour of length k or less. Given an algorithm for the optimization problem, the
decision problem can be solved by calculating the length of an optimal tour and comparing
it to the parameter k of the decision problem. Since the latter steps can be done in polyno-
mial time, if the optimization algorithm can be done in polynomial time, so can the decision
problem. On the other hand, given an algorithm for the decision problem, the optimization
problem can be solved through bisection as follows: a) Since the length of the shortest tour
is in the interval [n mini,j di,j , n maxi,j di,j ], invoke the decision algorithm with k equal to
the midpoint of this interval. b) If the instance is a “yes” instance, let k be the midpoint
of the lower half of the current interval; if not, let it be the midpoint of the upper half. c)
Repeat the previous step until the interval is reduced to one integer. The interval is bisected
O(log n(maxi,j di,j − mini,j di,j)) times. Thus, if the decision problem can be solved in
polynomial time, so can the optimization problem.

Whether P
?
= NP is one of the outstanding problems of computer science. The current

consensus of complexity theorists is that nondeterminism is such a powerful specification de-
vice that they are not equal. We return to this topic in Section 8.8.

8.5.1 Space and Time Hierarchies
In this section we state without proof the following time and space hierarchy theorems. (See
[126,127].) These theorems state that if one space (or time) resource bound grows sufficiently
rapidly relative to another, the set of languages recognized within the first bound is strictly
larger than the set recognized within the second bound.

THEOREM 8.5.1 (Time Hierarchy Theorem) If r(n) ≥ n is a proper complexity function,
then TIME(r(n)) is strictly contained in TIME(r(n) log r(n)).
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Let r(n) and s(n) be proper functions. If for all K > 0 there exists an N0 such that
s(n) ≥ Kr(n) for n ≥ N0, we say that r(n) is little oh of s(n) and write r(n) = o(s(n)).

THEOREM 8.5.2 (Space Hierarchy Theorem) If r(n) and s(n) are proper complexity func-
tions and r(n) = o(s(n)), then SPACE(r(n)) is strictly contained in SPACE(s(n)).

Theorem 8.5.3 states that there is a recursive but not proper resource function r(n) such
that TIME(r(n)) and TIME(2r(n)) are the same. That is, for some function r(n) there is a
gap of at least 2r(n) − r(n) in time over which no new decision problems are encountered.
This is a weakened version of a stronger result in [333] and independently reported by [51].

THEOREM 8.5.3 (Gap Theorem) There is a recursive function r(n) : B∗ "→ B∗ such that
TIME(r(n)) = TIME(2r(n)).

8.5.2 Time-Bounded Complexity Classes
As mentioned earlier, decision problems in P are considered to be feasible while the class
NP includes many interesting problems, such as the TRAVELING SALESPERSON problem,
whose feasibility is unknown. Two other important complexity classes are the deterministic
and nondeterministic exponential-time problems. By the remarks on page 336, TRAVELING

SALESPERSON clearly falls into the latter class.

DEFINITION 8.5.3 The classes EXPTIME and NEXPTIME consist of those decision problems
solvable in deterministic and nondeterministic exponential time, respectively, on a Turing machine.
That is,

EXPTIME =
⋃

k≥0

TIME(2nk

)

NEXPTIME =
⋃

k≥0

NTIME(2nk

)

We make the following observations concerning containment of these complexity classes.

THEOREM 8.5.4 The following complexity class containments hold:

P ⊆ NP ⊆ EXPTIME ⊆ NEXPTIME

However, P ⊂ EXPTIME, that is, P is strictly contained in EXPTIME.

Proof Since languages in P are recognized in polynomial time by a DTM and such machines
are included among the NDTMs, it follows immediately that P ⊆ NP. By similar reasoning,
EXPTIME ⊆ NEXPTIME.

We now show that P is strictly contained in EXPTIME. P ⊆ TIME(2n) follows be-
cause TIME(nk) ⊆ TIME(2n) for each k ≥ 0. By the Time Hierarchy Theorem (The-
orem 8.5.1), we have that TIME(2n) ⊂ TIME(n2n). But TIME(n2n) ⊆ EXPTIME.
Thus, P is strictly contained in EXPTIME.

Containment of NP in EXPTIME is deduced from the proof of Theorem 5.2.2 by
analyzing the time taken by the deterministic simulation of an NDTM. If the NDTM
executes T steps, the DTM executes O(kT ) steps for some constant k.



338 Chapter 8 Complexity Classes Models of Computation

The relationships P ⊆ NP and EXPTIME ⊆ NEXPTIME are examples of a more general
result, namely, TIME(r(n)) ⊆ NTIME(r(n)), where these two classes of decision problems
can respectively be solved deterministically and nondeterministically in time r(n), where n
is the length of the input. This result holds because every P ∈ TIME(r(n)) of length n is
accepted in r(n) steps by some DTM MP and a DTM is also a NDTM. Thus, it is also true
that P ∈ NTIME(r(n)).

8.5.3 Space-Bounded Complexity Classes
Many other important space complexity classes are defined by the amount of space used to
recognize languages and compute functions. We highlight five of them here: the determin-
istic and nondeterministic logarithmic space classes L and NL, the square-logarithmic space
class L2, and the deterministic and nondeterministic polynomial-space classes PSPACE and
NPSPACE.

DEFINITION 8.5.4 L and NL are the decision problems solvable in logarithmic space on a DTM
and NDTM, respectively. L2 are the decision problems solvable in space O(log2 n) on a DTM.
PSPACE and NPSPACE are the decision problems solvable in polynomial space on a DTM and
NDTM, respectively.

Because L and PSPACE are deterministic complexity classes, they are contained in NL and
NPSPACE, respectively: that is, L ⊆ NL and PSPACE ⊆ NPSPACE.

We now strengthen the latter result and show that PSPACE = NPSPACE, which means
that nondeterminism does not increase the recognition power of Turing machines if they al-
ready have access to a polynomial amount of storage space.

The REACHABILITY problem on directed acyclic graphs defined below is used to show this
result. REACHABILITY is applied to configuration graphs of deterministic and nondetermin-
istic Turing machines. Configuration graphs are introduced in Section 5.3.

REACHABILITY

Instance: A directed graph G = (V , E) and a pair of vertices u, v ∈ V .
Answer: “Yes” if there is a directed path in G from u to v.

REACHABILITY can be decided by computing the transitive closure of the adjacency matrix
of G in parallel. (See Section 6.4.) However, a simple serial RAM program based on depth-
first search can also solve the reachability problem. Depth-first search (DFS) on an undirected
graph G visits each edge in the forward direction once. Edges at each vertex are ordered. Each
time DFS arrives at a vertex it traverses the next unvisited edge. If DFS arrives at a vertex from
which there are no unvisited edges, it retreats to the previously visited vertex. Thus, after DFS
visits all the descendants of a vertex, it backs up, eventually returning to the vertex from which
the search began.

Since every T -step RAM computation can be simulated by an O(T 3)-step DTM computa-
tion (see Problem 8.6), a cubic-time DTM program based on DFS exists for REACHABILITY.
Unfortunately, the space to execute DFS on the RAM and Turing machine both can be linear
in the size of the graph. We give an improved result that allows us to strengthen PSPACE ⊆
NPSPACE to PSPACE = NPSPACE.

Below we show that REACHABILITY can be realized in quadratic logarithmic space. This
fact is then used to show that NSPACE(r(n)) ⊆ SPACE(r2(n)) for r(n) = Ω(log n).
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THEOREM 8.5.5 (Savitch) REACHABILITY is in SPACE(log2 n).

Proof As mentioned three paragraphs earlier, the REACHABILITY problem on a graph G =
(V , E) can be solved with depth-first search. This requires storing data on each vertex visited
during a search. This data can be as large as O(n), n = |V |. We exhibit an algorithm that
uses much less space.

Given an instance of REACHABILITY defined by G = (V , E) and u, v ∈ V , for each
pair of vertices (a, b) and integer k ≤ +log2 n, we define predicates PATH

(
a, b, 2k

)
whose

value is true if there exists a path from a to b in G whose length is at most 2k and false other-
wise. Since no path has length more than n, the solution to the REACHABILITY problem is
the value of PATH

(
u, v, 2#log2 n$). The predicates PATH

(
a, b, 20

)
are true if either a = b

or there is a path of length 1 (an edge) between the vertices a and b. Thus, PATH
(
a, b, 20

)

can be evaluated directly by consulting the problem instance on the input tape.
The algorithm that computes PATH

(
u, v, 2#log2 n$) with space O(log2 n) uses the

fact that any path of length at most 2k can be decomposed into two paths of length at
most 2k−1. Thus, if PATH

(
a, b, 2k

)
is true, then there must be some vertex z such that

PATH
(
a, z, 2k−1

)
and PATH

(
z, b, 2k−1

)
are both true. The truth of PATH

(
a, b, 2k

)
can

be established by searching for a z such that PATH
(
a, z, 2k−1

)
is true. Upon finding one,

we determine the truth of PATH
(
z, b, 2k−1

)
. Failing to find such a z, PATH

(
a, b, 2k

)
is

declared to be false. Each evaluation of a predicate is done in the same fashion, that is, re-
cursively. Because we need evaluate only one of PATH

(
a, z, 2k−1

)
and PATH

(
z, b, 2k−1

)

at a time, space can be reused.
We now describe a deterministic Turing machine with an input tape and two work tapes

computing PATH
(
u, v, 2#log2 n$). The input tape contains an instance of REACHABILITY,

which means it has not only the vertices u and v but also a description of the graph G. The
first work tape will contain triples of the form (a, b, k), which are called activation records.
This tape is initialized with the activation record (u, v, +log2 n,). (See Fig. 8.5.)

The DTM evaluates the last activation record, (a, b, k), on the first work tape as de-
scribed above. There are three kinds of activation records, complete records of the form
(a, b, k), initial segments of the form (a, z, k−1), and final segments of the form (z, b, k−
1). The first work tape is initialized with the complete record (u, v, +log2 n,).

An initial segment is created from the current complete record (a, b, k) by selecting a
vertex z to form the record (a, z, k − 1), which becomes the current complete record. If
it evaluates to true, it can be determined to be an initial or final segment by examining the
previous record (a, b, k). If it evaluates to false, (a, z, k − 1) is erased and another value
of z, if any, is selected and another initial segment placed on the work tape for evaluation.
If no other z exists, (a, z, k − 1) is erased and the expression PATH

(
a, b, 2k

)
is declared

false. If (a, z, k − 1) evaluates to true, the final record (z, b, k − 1) is created, placed on the
work tape, and evaluated in the same fashion. As mentioned in the second paragraph of this

u v xz()d−1zu()d d−2 )( ...

Figure 8.5 A snapshot of the stack used by the REACHABILITY algorithm in which the com-
ponents of an activation record (a, b, k) are distributed over several cells.
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proof, (a, b, 0) is evaluated by consulting the description of the graph on the input tape. The
second work tape is used for bookkeeping, that is, to enumerate values of z and determine
whether a segment is initial or final.

The second work tape uses space O(log n). The first work tape contains at most
+log2 n, activation records. Each activation record (a, b, k) can be stored in O(log n) space
because each vertex can be specified in O(log n) space and the depth parameter k can be
specified in O(log k) = O(log log n) space. It follows that the first work tape uses at most
O(log2 n) space.

The following general result, which is a corollary of Savitch’s theorem, demonstrates that
nondeterminism does not enlarge the space complexity classes if they are defined by space
bounds that are at least logarithmic. In particular, it implies that PSPACE = NPSPACE.

COROLLARY 8.5.1 Let r(n) be a proper Turing computable function r : "→ satisfying
r(n) = Ω(log n). Then NSPACE(r(n)) ⊆ SPACE(r2(n)).

Proof Let MND be an NDTM with input and output tapes and s work tapes. Let it recog-
nize a language L ∈ NSPACE(r(n)). For each input string w, we generate a configuration
graph G(MND, w) of MND. (See Fig. 8.6.) We use this graph to determine whether or not
w ∈ L. MND has at most |Q| states, each tape cell can have at most c values (there are
c(s+2)r(n) configurations for the s + 2 tapes), the s work tape heads and the output tape
head can assume values in the range 1 ≤ hj ≤ r(n), and the input head hs+1 can assume
one of n positions (there are nr(n)s+1 configurations for the tape heads). It follows that
MND has at most |Q|c(s+2)r(n)(n r(n)s+1) ≤ klog n+r(n) configurations. G(MND, w)
has the same number of vertices as there are configurations and a number of edges at most
the square of its number of vertices.

Let L ∈ NSPACE(r(n)) be recognized by an NDTM MND. We describe a determin-
istic r2(n)-space Turing machine MD recognizing L. For input string w ∈ L of length n,
this machine solves the REACHABILITY problem on the configuration graph G(MND, w)
of MND described above. However, instead of placing on the input tape the entire configu-
ration graph, we place the input string w and the description of MND. We keep configura-
tions on the work tape as part of activation records (they describe vertices of G(MND, w)).

Figure 8.6 The acyclic configuration graph G(MND, w) of a nondeterministic Turing machine
MND on input w has one vertex for each configuration of MND. Here heavy edges identify the
nondeterministic choices associated with a configuration.
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Each of the vertices (configurations) adjacent to a particular vertex can be deduced from the
description of MND.

Since the number of configurations of MND is N = O
(
klog n+r(n)

)
, each configura-

tion or activation record can be stored as a string of length O(r(n)).
From Theorem 8.5.5, the reachability in G(MND, w) of the final configuration from

the initial one can be determined in space O(log2 N). But N = O
(
klog n+r(n)

)
, from

which it follows that NSPACE(r(n)) ⊆ SPACE(r2(n)).

The classes NL, L2 and PSPACE are defined as unions of deterministic and nondetermin-
istic space-bounded complexity classes. Thus, it follows from this corollary that NL ⊆ L2 ⊆
PSPACE. However, because of the space hierarchy theorem (Theorem 8.5.2), it follows that
L2 is contained in but not equal to PSPACE, denoted L2 ⊂ PSPACE.

8.5.4 Relations Between Time- and Space-Bounded Classes
In this section we establish a number of complexity class containment results involving both
space- and time-bounded classes. We begin by proving that the nondeterministic O(r(n))-
space class is contained within the deterministic O

(
kr(n)

)
-time class. This implies that NL ⊆

P and NPSPACE ⊆ EXPTIME.

THEOREM 8.5.6 The classes NSPACE(r(n)) and TIME(r(n)) of decision problems solvable in
nondeterministic space and deterministic time r(n), respectively, satisfy the following relation for
some constant k > 0:

NSPACE(r(n)) ⊆ TIME(klog n+r(n))

Proof Let MND accept a language L ∈ NSPACE(r(n)) and let G(MND, w) be the
configuration graph for MND on input w. To determine if w is accepted by MND and
therefore in L, it suffices to determine if there is a path in G(MND, w) from the initial
configuration of MND to the final configuration. This is the REACHABILITY problem,
which, as stated in the proof of Theorem 8.5.5, can be solved by a DTM in time polynomial
in the length of the input. When this algorithm needs to determine the descendants of a
vertex in G(MND, w), it consults the definition of MND to determine the configurations
reachable from the current configuration. It follows that membership of w in L can be
determined in time O

(
klog n+r(n)

)
for some k > 1 or that L is in TIME

(
klog n+r(n)

)
.

COROLLARY 8.5.2 NL ⊆ P and NPSPACE ⊆ EXPTIME

Later we explore the polynomial-time problems by exhibiting other important complexity
classes that reside inside P. (See Section 8.15.) We now show containment of the nondeter-
ministic time complexity classes in deterministic space classes.

THEOREM 8.5.7 The following containment holds:

NTIME(r(n)) ⊆ SPACE(r(n))

Proof We use the construction of Theorem 5.2.2. Let L be a language in NTIME(r(n)).
We note that the choice string on the enumeration tape converts the nondeterministic recog-
nition of L into deterministic recognition. Since L is recognized in time r(n) for some
accepting computation, the deterministic enumeration runs in time r(n) for each choice
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coNPNP
L2

P

L

NL

PSPACE = NPSPACE

PRIMALITY

NP ∩ coNP

NP ∪ coNP

Figure 8.7 The relationships among complexity classes derived in this section. Containment is
indicated by arrows.

string. Thus, O(r(n)) cells are used on the work and enumeration tapes in this determinis-
tic simulation and L is in PSPACE.

An immediate corollary to this theorem is that NP ⊆ PSPACE. This implies that P ⊆
EXPTIME. However, as mentioned above, P is strictly contained within EXPTIME.

Combining these results, we have the following complexity class inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

where PSPACE = NPSPACE. We also have L2 ⊂ PSPACE, and P ⊂ EXPTIME, which
follow from the space and time hierarchy theorems. These inclusions and those derived below
are shown in Fig. 8.7.

In Section 8.6 we develop refinements of this partial ordering of complexity classes by using
the complements of complexity classes.

We now digress slightly to discuss space-bounded functions.

8.5.5 Space-Bounded Functions
We digress briefly to specialize Theorem 8.5.6 to log-space computations, not just log-space
language recognition. As the following demonstrates, log-space computable functions are com-
putable in polynomial time.

THEOREM 8.5.8 Let M be a DTM that halts on all inputs using space O(log n) to process inputs
of length n. Then M executes a polynomial number of steps.

Proof In the proof of Corollary 8.5.1 the number of configurations of a Turing machine M
with input and output tapes and s work tapes is counted. We repeat this analysis. Let r(n)
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be the maximum number of tape cells used and let c be the maximal size of a tape alphabet.
Then, M can be in one of at most χ ≤ c(s+2)r(n)(n r(n)s+1) = O(kr(n)) configurations
for some k ≥ 1. Since M always halts, by the pigeonhole principle, it passes through at
most χ configurations in at most χ steps. Because r(n) = O(log n), χ = O(nd) for some
integer d. Thus, M executes a polynomial number of steps.

8.6 Complements of Complexity Classes
As seen in Section 4.6, the regular languages are closed under complementation. However, we
have also seen in Section 4.13 that the context-free languages are not closed under comple-
mentation. Thus, complementation is a way to develop an understanding of the properties of
a class of languages. In this section we show that the nondeterministic space classes are closed
under complements. The complements of languages and decision problems were defined at
the beginning of this chapter.

Consider REACHABILITY. Its complement REACHABILITY is the set of directed graphs
G = (V , E) and pairs of vertices u, v ∈ V such that there are no directed paths between u
and v. It follows that the union of these two problems is not the entire set of strings over B∗

but the set of all instances consisting of a directed graph G = (V , E) and a pair of vertices
u, v ∈ V . This set is easily detected by a DTM. It must only verify that the string describing a
putative graph is in the correct format and that the representations for u and v are among the
vertices of this graph.

Given a complexity class, it is natural to define the complement of the class.

DEFINITION 8.6.1 The complement of a complexity class of decision problems C, denoted
coC, is the set of decision problems that are complements of decision problems in C.

Our first result follows from the definition of the recognition of languages by DTMs.

THEOREM 8.6.1 If C is a deterministic time or space complexity class, then coC = C.

Proof Every L ∈ C is recognized by a DTM M that halts within the resource bound
of C for every string, whether in L or L, the complement of L. Create M from M by
complementing the accept/reject status of states of M ’s control unit. Thus, L, which by
definition is in coC, is also in C. That is, coC ⊆ C. Similarly, C ⊆ coC. Thus, coC = C.

In particular, this result says that the class P is closed under complements. That is, if the
“yes” instances of a decision problem can be answered in deterministic polynomial time, then
so can the “No” instances.

We use the above theorem and Theorem 5.7.6 to give another proof that there are problems
that are not in P.

COROLLARY 8.6.1 There are languages not in P, that is, languages that cannot be recognized
deterministically in polynomial time.

Proof Since every language in P is recursive and L1 defined in Section 5.7.2 is not recursive,
it follows that L1 is not in P.

We now show that all nondeterministic space classes with a sufficiently large space bound
are also closed under complements. This leaves open the question whether the nondetermin-
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istic time classes are closed under complement. As we shall see, this is intimately related to the

question P
?
= NP.

As stated in Definition 5.2.1, for no choices of moves is an NDTM allowed to produce an
answer for which it is not designed. In particular, when computing a function it is not allowed
to give a false answer for any set of nondeterministic choices.

THEOREM 8.6.2 (Immerman-Szelepscényi) Given a graph G = (V , E) and a vertex v, the
number of vertices reachable from v can be computed by an NDTM in space O(log n), n = |V |.

Proof Let V = {1, 2, . . . , n}. Any node reachable from a vertex v must be reachable via a
path of length (number of edges) of at most n − 1, n = |V |. Let R(k, u) be the number
of vertices of G reachable from u by paths of length k or less. The goal is to compute
R(n − 1, u). A deterministic program for this purpose could be based on the predicate
PATH(u, v, k) that has value 1 if there is a path of length k or less from vertex u to vertex
v and 0 otherwise and the predicate ADJACENT-OR-IDENTICAL(x, v) that has value 1 if
x = v or there is an edge in G from x to v and 0 otherwise. (See Fig. 8.8.) If we let the
vertices be associated with the integers in the interval [1, . . . , n], then R(n − 1, u) can be
evaluated as follows:

R(n − 1, u) =
∑

1≤v≤n

PATH(u, v, n − 1)

=
∨

1≤v≤n

∑

1≤x≤n

PATH(u, x, n− 2)ADJACENT-OR-EQUAL(x, v)

When this description of R(n− 1, u) is converted to a program, the amount of storage
needed grows more rapidly than O(log n). However, if the inner use of PATH(u, x, n − 2)
is replaced by the nonrecursive and nondeterministic test EXISTS-PATH-FROM-u-TO-v-≤
LENGTH of Fig. 8.9 for a path from u to x of length n − 2, then the space can be kept to
O(log n). This test nondeterministically guesses paths but verifies deterministically that all
paths have been explored.

The procedure COUNTING-REACHABILITY of Fig. 8.9 is a nondeterministic program
computing R(n − 1, u). It uses the procedure #-VERTICES-AT-≤-DISTANCE-FROM-u
to compute the number of vertices at distance dist or less from u in order of increasing
values of dist. (It computes dist correctly or fails.) This procedure has prev num dist
as a parameter, which is the number of vertices at distance dist − 1 or less. It passes this

u

x
v

(a)

u

x = v

(b)

Figure 8.8 Paths explored by the REACHABILITY algorithm. Case (a) applies when x and v are
different and (b) when they are the same.



c©John E Savage 8.6 Complements of Complexity Classes 345

COUNTING-REACHABILITY(u)
{R(k, u) = number of vertices at distance ≤ k from u in G = (V , E)}

prev num dist := 1; {num dist = R(0, u)}
for dist := 1 to n − 1

num dist := #-VERTICES-AT-≤-DIST-FROM-u(dist, u, prev num dist)
prev num dist := num dist

{num dist = R(dist, u)}
return(num dist)

#-VERTICES-AT-≤-DISTANCE-FROM-u(dist, u, prev num dist)
{Returns R(dist, u) given prev num dist = R(dist − 1, u) or fails}

num nodes := 0
for last node := 1 to n

if IS-NODE-AT-≤-DIST-FROM-u(dist, u, last node, prev num dist) then
num nodes := num nodes + 1

return (num nodes)

IS-NODE-AT-≤-DIST-FROM-u(dist, u, last node, prev num dist)
{num node = number of vertices at distance ≤ dist from u found so far}
num node := 0;
reply := false
for next to last node := 1 to n

if EXISTS-PATH-FROM-u-TO-v-≤-LENGTH(u, next to last node, dist − 1) then
num node := num node + 1 {count number of next-to-last nodes or fail}
if ADJACENT-OR-IDENTICAL(next to last node, last node) then

reply := true
if num node < prev num dist then

fail
else return(reply)

EXISTS-PATH-FROM-u-TO-v-≤-LENGTH(u, v, dist)
{nondeterministically choose at most dist vertices, fail if they don’t form a path}
node 1 := u
for count := 1 to dist

node 2 := NONDETERMINISTIC-GUESS([1, .., n])
if not ADJACENT-OR-IDENTICAL(node 1, node 2) then

fail
else node 1 := node 2

if node 2 = v then
return(true)

else
return(false)

Figure 8.9 A nondeterministic program counting vertices reachable from u. Comments are
enclosed in braces {, }.
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value to the procedure IS-NODE-AT-≤-DIST-FROM-u, which examines and counts all pos-
sible next to last nodes reachable from u. #-VERTICES-AT-≤-DISTANCE-FROM-u ei-
ther fails to find all possible vertices at distance dist − 1, in which case it fails, or finds all
such vertices. Thus, it nondeterministically verifies that all possible paths from u have been
explored. IS-NODE-AT-≤-DIST-FROM-u uses the procedure EXISTS-PATH-FROM-u-TO-
v-≤-LENGTH that either correctly verifies that a path of length dist − 1 exists from u to
next to last node or fails. In turn, EXISTS-PATH-FROM-u-TO-v-≤-LENGTH uses the
command NONDETERMINISTIC-GUESS([1, .., n]) to nondeterministically choose nodes
on a path from u to v.

Since this program is not recursive, it uses a fixed number of variables. Because these
variables assume values in the range [1, 2, 3, . . . , n], it follows that space O(log n) suffices
to implement it on an NDTM.

We now extend this result to nondeterministic space computations.

COROLLARY 8.6.2 If r(n) = Ω(log n) is proper, NSPACE(r(n)) = coNSPACE(r(n)).

Proof Let L ∈ NSPACE(r(n)) be decided by an r(n)-space bounded NDTM M . We
show that the complement of L can be decided by a nondeterministic r(n)-space bounded
Turing machine M , stopping on all inputs. We modify slightly the program of Fig. 8.9 for
this purpose. The graph G is the configuration graph of M . Its initial state is determined
by the string w that is initially written on M ’s input tape. To determine adjacency between
two vertices in the configuration graph, computations of M are simulated on one of M ’s
work tapes.

M computes a slightly modified version of COUNTING-REACHABILITY. First, if the
procedure IS-NODE-AT-LENGTH-≤-DIST-FROM-u returns true for a vertex u that is a
halting accepting configuration of M , then M halts and rejects the string. If the procedure
COUNTING-REACHABILITY completes successfully without rejecting any string, then M
halts and accepts the input string because every possible accepting computation for the input
string has been examined and none of them is accepting. This computation is nondetermin-
istic.

The space used by M is the space needed for COUNTING-REACHABILITY, which
means it is O(log N), where N is the number of vertices in the configuration graph of
M plus the space for a simulation of M , which is O(r(n)). Since N = O(klog n+r(n))
(see the proof of Theorem 8.5.6), the total space for this computation is O(log n + r(n)),
which is O(r(n)) if r(n) = Ω(log n). By definition L ∈ coNSPACE(r(n)). From the
above construction L ∈ NSPACE(r(n)). Thus, coNSPACE(r(n)) ⊆ NSPACE(r(n)).

By similar reasoning, if L ∈ coNSPACE(r(n)), then L ∈ NSPACE(r(n)), which im-
plies that NSPACE(r(n)) ⊆ coNSPACE(r(n)); that is, they are equal.

The lowest class in the space hierarchy that is known to be closed under complements is
the class NL; that is, NL = coNL. This result is used in Section 8.11 to show that the problem
2-SAT, a specialization of the NP-complete problem 3-SAT, is in P.

From Theorem 8.6.1 we know that all deterministic time and space complexity classes are
closed under complements. From Corollary 8.6.2 we also know that all nondeterministic space
complexity classes with space Ω(log n) are closed under complements. However, we do not
yet know whether the nondeterministic time complexity classes are closed under complements.
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This important question is related to the question whether P
?
= NP, because if NP /= coNP,

then P /= NP because P is closed under complements but NP is not.

8.6.1 The Complement of NP
The class coNP is the class of decision problems whose complements are in NP. That is,
coNP is the language of “No” instances of problems in NP. The decision problem VALIDITY

defined below is an example of a problem in coNP. In fact, it is log-space complete for coNP.
(See Problem 8.10.) VALIDITY identifies SOPEs (the sum-of-products expansion, defined in
Section 2.3) that can have value 1.

VALIDITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of products
P = (p1, p2, . . . , pm), where each product pi is a subset of X .
Answer: “Yes” if for all assignments of Boolean values to variables in {x1, x2, . . . , xn} every
literal in at least one product has value 1.

Given a language L in NP, a string in L has a certificate for its membership in L consisting
of the set of choices that cause its recognizing Turing machine to accept it. For example, a
certificate for SATISFIABILITY is a set of values for its variables satisfying at least one literal
in each sum. For an instance of a problem in coNP, a disqualification is a certificate for the
complement of the instance. An instance in coVALIDITY is disqualified by an assignment that
causes all products to have value 0. Thus, each “Yes” instance in VALIDITY is disqualified by
an assignment that prevents the expression from being valid. (See Problem 8.11.)

As mentioned just before the start of this section, if NP /= coNP, then P /= NP because P
is closed under complements. Because we know of no way to establish NP /= coNP, we try to
identify a problem that is in NP but is not known to be in P. A problem that is NP and coNP
simultaneously (the class NP ∩ coNP) is a possible candidate for a problem that is in NP but
not P, which would show that P /= NP. We show that PRIMALITY is in NP ∩ coNP. (It is
straightforward to show that P ⊆ NP ∩ coNP. See Problem 8.12.)

PRIMALITY

Instance: An integer n written in binary notation.
Answer: “Yes” if n is a prime.

A disqualification for PRIMALITY is an integer that is a factor of n. Thus, the complement
of PRIMALITY is in NP, so PRIMALITY is in coNP. We now show that PRIMALITY is also in
NP or that it is in NP ∩ coNP. To prove the desired result we need the following result from
number theory, which we do not prove (see [234, p. 222] for a proof ).

THEOREM 8.6.3 An integer p > 2 is prime if and only if there is an integer 1 < r < p such that
rp−1 = 1 mod p and for all prime divisors q of p − 1, r(p−1)/q /= 1 mod p.

As a consequence, to give evidence of primality of an integer p > 1, we need only provide
an integer r, 1 < r < p, and the prime divisors {q1, . . . , qk} other than 1 of p − 1 and then
show that rp−1 = 1 mod p and r(p−1)/q /= 1 mod p for q ∈ {q1, . . . , qk}. By the theorem,
such integers exist if and only if p is prime. In turn, we must give evidence that the integers
{q1, . . . , qk} are prime divisors of p − 1, which requires showing that they divide p − 1 and
are prime. We must also show that k is small and that the recursive check of the primes does
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not grow exponentially. Evidence of the primality of the divisors can be given in the same way,
that is, by exhibiting an integer rj for each prime as well as the prime divisors of qj − 1 for
each prime qj . We must then show that all of this evidence can be given succinctly and verified
deterministically in time polynomial in the length n of p.

THEOREM 8.6.4 PRIMALITY is in NP ∩ coNP.

Proof We give an inductive proof that PRIMALITY is in NP. For a prime p we give its
evidence E(p) as (p; r, E(q1), . . . , E(qk)), where E(qj) is evidence for the prime qj . We
let the evidence for the base case p = 2 be E(2) = (2). Then, E(3) = (3; 2, (2)) because
r = 2 works for this case and 2 is the only prime divisor of 3−1, and (2) is the evidence for
it. Also, E(5) = (5; 3, (2)). The length |E(p)| of the evidence E(p) on p is the number
of parentheses, commas and bits in integers forming part of the evidence.

We show by induction that |E(p)| is at most 4 log2
2 p. The base case satisfies the hy-

pothesis because |E(2)| = 4.
Because the prime divisors {q1, . . . , qk} satisfy qi ≥ 2 and q1q2 · · · qk ≤ p−1, it follows

that k ≤ 0log2 p1 ≤ n. Also, since p is prime, it is odd and p − 1 is divisible by 2. Thus,
the first prime divisor of p − 1 is 2.

Let E(p) = (p; r, E(2), E(q2), . . . , E(qk)). Let the inductive hypothesis be that
|E(p)| ≤ 4 log2

2 p. Let nj = log2 qj . From the definition of E(p) we have that |E(p)|
satisfies the following inequality because at most n bits are needed for p and r, there are
k − 1 ≤ n − 1 commas and three other punctuation marks, and |E(2)| = 4.

|E(p)| ≤ 3n + 6 + 4
∑

2≤j≤k

n2
j

Since the qj are the prime divisors of p − 1 and some primes may be repeated in p − 1,
their product (which includes q1 = 2) is at most p − 1. It follows that

∑
2≤j≤k nj ≤

log2 Π2≤j≤kqj ≤ log((p − 1)/2). Since the sum of the squares of nj is less than or equal
to the square of the sum of nj , it follows that the sum in the above expression is at most
(log2 p− 1)2 ≤ (n− 1)2. But 3n + 6 + 4(n− 1)2 = 4n2 − 5n + 10 ≤ 4n2 when n ≥ 2.
Thus, the description of a certificate for the primality of p is polynomial in the length n of p.

We now show by induction that a prime p can be verified in O(n4) steps on a RAM.
Assume that the divisors q1, . . . , qk for p − 1 have been verified. To verify p, we compute
rp−1 mod p from r and p as well as r(p−1)/q mod p for each of the prime divisors q of
p − 1 and compare the results with 1. The integers (p − 1)/q can be computed through
subtraction of n-bit numbers in O(n2) steps on a RAM. To raise r to an exponent e, rep-
resent e as a binary number. For example, if e = 7, write it as p = 22 + 21 + 20. If t

is the largest such power of 2, t ≤ log2(p − 1) ≤ n. Compute r2j

mod p by squaring
r j times, each time reducing it by p through division. Since each squaring/reduction step

takes O(n2) RAM steps, at most O(jn2) RAM steps are required to compute r2j
. Since

this may be done for 2 ≤ j ≤ t and
∑

2≤j≤t j = O(t2), at most O(n3) RAM steps suffice

to compute one of rp−1 mod p or r(p−1)/q mod p for a prime divisor q. Since there are at
most n of these quantities to compute, O(n4) RAM steps suffice to compute them.

To complete the verification of the prime p, we also need to verify the divisors q1, . . . , qk

of p− 1. We take as our inductive hypothesis that an arbitrary prime q of n bits can be veri-
fied in O(n5) steps. Since the sum of the number of bits in q2, . . . , qk is (log2(p−1)/2−1)
and the sum of the kth powers is no more than the kth power of the sum, it follows that
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O(n5) RAM steps suffice to verify p. Since a polynomial number of RAM steps can be
executed in a polynomial number of Turing machine steps, PRIMALITY is in NP.

Since NP ∩ coNP ⊆ NP and NP ∩ coNP ⊆ coNP as well as NP ⊆ NP ∪ coNP and
coNP ⊆ NP ∪ coNP, we begin to have the makings of a hierarchy. If we add that coNP
⊆ PSPACE (see Problem 8.13), we have the relationships between complexity classes shown
schematically in Fig. 8.7.

8.7 Reductions
In this section we specialize the reductions introduced in Section 2.4 and use them to classify
problems into categories. We show that if problem A is reduced to problem B by a function
in the set R and A is hard relative to R, then B cannot be easy relative to R because A can
be solved easily by reducing it to B and solving B with an easy algorithm, contradicting the
fact that A is hard. On the other hand, if B is easy to solve relative to R, then A must be
easy to solve. Thus, reductions can be used to show that some problems are hard or easy. Also,
if A can be reduced to B by a function in R and vice versa, then A and B have the same
complexity relative to R.

Reductions are widely used in computer science; we use them whenever we specialize one
procedure to realize another. Thus, reductions in the form of simulations are used throughout
Chapter 3 to exhibit circuits that compute the same functions that are computed by finite-
state, random-access, and Turing machines, with and without nondeterminism. Simulations
prove to be an important type of reduction. Similarly, in Chapter 10 we use simulation to show
that any computation done in the pebble game can be simulated by a branching program.

Not only did we simulate machines with memory by circuits in Chapter 3, but we demon-
strated in Sections 3.9.5 and 3.9.6 that the languages CIRCUIT VALUE and CIRCUIT SAT

describing circuits are P-complete and NP-complete, respectively. We demonstrated that each
string x in an arbitrary language in P (NP) could be translated into a string in CIRCUIT VALUE

(respectively, CIRCUIT SAT) by a program whose running time is polynomial in the length of
x and whose space is logarithmic in its length.

In this chapter we extend these results. We consider primarily transformations (also called
many-one reductions and just reductions in Section 5.8.1), a type of reduction in which an
instance of one decision problem is translated to an instance of a second problem such that the
former is a “yes” instance if and only if the latter is a “yes” instance. A Turing reduction is a
second type of reduction that is defined by an oracle Turing machine. (See Section 8.4.2 and
Problem 8.15.) In this case the Turing machine may make more than one call to the second
problem (the oracle). A transformation is equivalent to an oracle Turing reduction that makes
one call to the oracle. Turing reductions subsume all previous reductions used elsewhere in this
book. (See Problems 8.15 and 8.16.) However, since the results of this section can be derived
with the weaker transformations, we limit our attention to them.

DEFINITION 8.7.1 If L1 and L2 are languages, a transformation h from L1 to L2 is a DTM-
computable function h : B∗ "→ B∗ such that x ∈ L1 if and only if h(x) ∈ L2. A resource-
bounded transformation is a transformation that is computed under a resource bound such as
deterministic logarithmic space or polynomial time.
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The classification of problems is simplified by considering classes of transformations. These
classes will be determined by bounds on resources such as space and time on a Turing machine
or circuit size and depth.

DEFINITION 8.7.2 For decision problems P1 and P2, the notation P1 ≤R P2 means that P1 can
be transformed to P2 by a transformation in the class R.

Compatibility among transformation classes and complexity classes helps determine con-
ditions under which problems are hard.

DEFINITION 8.7.3 Let C be a complexity class, R a class of resource-bounded transformations, and
P1 and P2 decision problems. A set of transformations R is compatible with C if P1 ≤R P2

and P2 ∈ C, then P1 ∈ C.

It is easy to see that the polynomial-time transformations (denoted ≤p) are compatible
with P. (See Problem 8.17.) Also compatible with P are the log-space transformations (de-
noted ≤log-space) associated with transformations that can be computed in logarithmic space.
Log-space transformations are also polynomial transformations, as shown in Theorem 8.5.8.

8.8 Hard and Complete Problems
Classes of problems are defined above by their use of space and time. We now set the stage for
the identification of problems that are hard relative to members of these classes. A few more
definitions are needed before we begin this task.

DEFINITION 8.8.1 A class R of transformations is transitive if the composition of any two trans-
formations in R is also in R and for all problems P1, P2, and P3, P1 ≤R P2 and P2 ≤R P3

implies that P1 ≤R P3.

If a class R of transformations is transitive, then we can compose any two transformations
in the class and obtain another transformation in the class. Transitivity is used to define hard
and complete problems.

The transformations ≤p and ≤log-space described above are transitive. Below we show
that ≤log-space is transitive and leave to the reader the proof of transitivity of ≤p and the
polynomial-time Turing reductions. (See Problem 8.19.)

THEOREM 8.8.1 Log-space transformations are transitive.

Proof A log-space transformation is a DTM that has a read-only input tape, a write-only
output tape, and a work tape or tapes on which it uses O(log n) cells to process an input
string w of length n. As shown in Theorem 8.5.8, such DTMs halt within polynomial time.
We now design a machine T that composes two log-space transformations in logarithmic
space. (See Fig. 8.10.)

Let M1 and M2 denote the first and second log-space DTMs. When M1 and M2 are
composed to form T , the output tape of M1, which is also the input tape of M2, becomes
a work tape of T . Since M1 may execute a polynomial number of steps, we cannot store all
its output before beginning the computation by M2. Instead we must be more clever. We
keep the contents of the work tapes of both machines as well as (and this is where we are
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Figure 8.10 The composition of two deterministic log-space Turing machines.

clever) an integer h1 recording the position of the input head of M2 on the output tape of
M1. If M2 moves its input head right by one step, M1 is simulated until one more output
is produced. If its head moves left, we decrement h1, restart M1, and simulate it until h1

outputs are produced and then supply this output as an input to M2.

The space used by this simulation is the space used by M1 and M2 plus the space for
h1, the value under the input head of M2 and some temporary space. The total space is
logarithmic in n since h1 is at most a polynomial in n.

We now apply transitivity of reductions to define hard and complete problems.

DEFINITION 8.8.2 Let R be a class of reductions, let C be a complexity class, and let R be com-
patible with C. A problem Q is hard for C under R-reductions if for every problem P ∈ C,
P ≤R Q. A problem Q is complete for C under R-reductions if it is hard for C under
R-reductions and is a member of C.

Problems are hard for a class if they are as hard to solve as any other problem in the class.
Sometimes problems are shown hard for a class without showing that they are members of that
class. Complete problems are members of the class for which they are hard. Thus, complete
problems are the hardest problems in the class. We now define three important classes of
complete problems.
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DEFINITION 8.8.3 Problems in P that are hard for P under log-space reductions are called P-
complete. Problems in NP that are hard for NP under polynomial-time reductions are called NP-
complete. Problems in PSPACE that are hard for PSPACE under polynomial-time reductions are
called PSPACE-complete.

We state Theorem 8.8.2, which follows directly from Definition 8.7.3 and transitivity of
log-space and polynomial-time reductions, because it incorporates as conditions the goals of
the study of P-complete, NP-complete, and PSPACE-complete problems, namely, to show
that all problems in P can be solved in log-space and all problems in NP and PSPACE can be
solved in polynomial time. It is unlikely that any of these goals can be reached.

THEOREM 8.8.2 If a P-complete problem can be solved in log-space, then all problems in P can
be solved in log-space. If an NP-complete problem is in P, then P = NP. If a PSPACE-complete
problem is in P, then P = PSPACE.

In Theorem 8.14.2 we show that if a P-complete problem can be solved in poly-logarithmic
time with polynomially many processors on a CREW PRAM (they are fully parallelizable),
then so can all problems in P. It is considered unlikely that all languages in P can be fully par-
allelized. Nonetheless, the question of the parallelizability of P is reduced to deciding whether
P-complete problems are parallelizable.

8.9 P-Complete Problems
To show that a problem P is P-complete we must show that it is in P and that all problems
in P can be reduced to P via a log-space reduction. (See Section 3.9.5.) The task of showing
this is simplified by the knowledge that log-space reductions are transitive: if another problem
Q has already been shown to be P-complete, to show that P is P-complete it suffices to show
there is a log-space reduction from Q to P and that P ∈ P.

CIRCUIT VALUE

Instance: A circuit description with fixed values for its input variables and a designated
output gate.
Answer: “Yes” if the output of the circuit has value 1.

In Section 3.9.5 we show that the CIRCUIT VALUE problem described above is P-complete
by demonstrating that for every decision problem P in P an instance w of P and a DTM M
that recognizes “Yes” instances of P can be translated by a log-space DTM into an instance c
of CIRCUIT VALUE such that w is a “Yes” instance of P if and only if c is a “Yes” instance of
CIRCUIT VALUE.

Since P is closed under complements (see Theorem 8.6.1), it follows that if the “Yes” in-
stances of a decision problem can be determined in polynomial time, so can the “No” instances.
Thus, the CIRCUIT VALUE problem is equivalent to determining the value of a circuit from its
description. Note that for CIRCUIT VALUE the values of all variables of a circuit are included
in its description.

CIRCUIT VALUE is in P because, as shown in Theorem 8.13.2, a circuit can be evaluated
in a number of steps proportional at worst to the square of the length of its description. Thus,
an instance of CIRCUIT VALUE can be evaluated in a polynomial number of steps.
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Monotone circuits are constructed of AND and OR gates. The functions computed by
monotone circuits form an asymptotically small subset of the set of Boolean functions. Also,
many important Boolean functions are not monotone, such as binary addition. But even
though monotone circuits are a very restricted class of circuits, the monotone version of CIR-
CUIT VALUE, defined below, is also P-complete.

MONOTONE CIRCUIT VALUE

Instance: A description for a monotone circuit with fixed values for its input variables and
a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

CIRCUIT VALUE is a starting point to show that many other problems are P-complete. We
begin by reducing it to MONOTONE CIRCUIT VALUE.

THEOREM 8.9.1 MONOTONE CIRCUIT VALUE is P-complete.

Proof As shown in Problem 2.12, every Boolean function can be realized with just AND

and OR gates (this is known as dual-rail logic) if the values of input variables and their
complements are made available. We reduce an instance of CIRCUIT VALUE to an instance
of MONOTONE CIRCUIT VALUE by replacing each gate with the pair of monotone gates
described in Problem 2.12. Such descriptions can be written out in log-space if the gates in
the monotone circuit are numbered properly. (See Problem 8.20.) The reduction must also
write out the values of variables of the original circuit and their complements.

The class of P-complete problems is very rich. Space limitations require us to limit our
treatment of this subject to two more problems. We now show that LINEAR INEQUALITIES

described below is P-complete. LINEAR INEQUALITIES is important because it is directly re-
lated to LINEAR PROGRAMMING, which is widely used to characterize optimization problems.
The reader is asked to show that LINEAR PROGRAMMING is P-complete. (See Problem 8.21.)

LINEAR INEQUALITIES

Instance: An integer-valued m × n matrix A and column m-vector b.
Answer: “Yes” if there is a rational column n-vector x>0 (all components are non-negative
and at least one is non-zero) such that Ax ≤ b.

We show that LINEAR INEQUALITIES is P-hard, that is, that every problem in P can be
reduced to it in log-space. The proof that LINEAR INEQUALITIES is in P, an important and
difficult result in its own right, is not given here. (See [164].)

THEOREM 8.9.2 LINEAR INEQUALITIES is P-hard.

Proof We give a log-space reduction of CIRCUIT VALUE to LINEAR INEQUALITIES. That
is, we show that in log-space an instance of CIRCUIT VALUE can be transformed to an in-
stance of LINEAR INEQUALITIES so that an instance of CIRCUIT VALUE is a “Yes” instance
if and only if the corresponding instance of LINEAR INEQUALITIES is a “Yes” instance.

The log-space reduction that we use converts each gate and input in an instance of a
circuit into a set of inequalities. The inequalities describing each gate are shown below. (An
equality relation a = b is equivalent to two inequality relations, a ≤ b and b ≤ a.) The
reduction also writes the equality z = 1 for the output gate z. Since each variable must
be non-negative, this last condition insures that the resulting vector of variables, x, satisfies
x > 0.
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Input Gates

Type TRUE FALSE NOT AND OR

Function xi = 1 xi = 0 w = ¬u w = u ∧ v w = u ∨ v

Inequalities xi = 1 xi = 0 0 ≤ w ≤ 1 0 ≤ w ≤ 1 0 ≤ w ≤ 1

w = 1 − u w ≤ u u ≤ w

w ≤ v v ≤ w

u + v − 1 ≤ w w ≤ u + v

Given an instance of CIRCUIT VALUE, each assignment to a variable is translated into
an equality statement of the form xi = 0 or xi = 1. Similarly, each AND, OR, and NOT

gate is translated into a set of inequalities of the form shown above. Logarithmic temporary
space suffices to hold gate numbers and to write these inequalities because the number of
bits needed to represent each gate number is logarithmic in the length of an instance of
CIRCUIT VALUE.

To see that an instance of CIRCUIT VALUE is a “Yes” instance if and only if the instance
of LINEAR INEQUALITIES is also a “Yes” instance, observe that inputs of 0 or 1 to a gate
result in the correct output if and only if the corresponding set of inequalities forces the
output variable to have the same value. By induction on the size of the circuit instance, the
values computed by each gate are exactly the same as the values of the corresponding output
variables in the set of inequalities.

We give as our last example of a P-complete problem DTM ACCEPTANCE, the problem
of deciding if a string is accepted by a deterministic Turing machine in a number of steps
specified as a unary number. (The integer k is represented as a unary number by a string of k
characters.) For this problem it is more convenient to give a direct reduction from all problems
in P to DTM ACCEPTANCE.

DTM ACCEPTANCE

Instance: A description of a DTM M , a string w, and an integer n written in unary.
Answer: “Yes” if and only if M , when started with input w, halts with the answer “Yes” in
at most n steps.

THEOREM 8.9.3 DTM ACCEPTANCE is P-complete.

Proof To show that DTM ACCEPTANCE is log-space complete for P, consider an arbitrary
problem P in P and an arbitrary instance of P , namely x. There is some Turing machine,
say MP , that accepts instances x of P of length n in time p(n), p a polynomial. We assume
that p is included with the specification of MP . For example, if p(y) = 2y4 + 3y2 + 1, we
can represent it with the string ((2, 4), (3, 2), (1, 0)). The log-space Turing machine that
translates MP and x into an instance of DTM ACCEPTANCE writes the description of MP
together with the input x and the value of p(n) in unary. Constant temporary space suffices
to move the descriptions of MP and x to the output tape. To complete the proof we need
only show that O(log n) temporary space suffices to write the value in p(n) in unary, where
n is the length of x.
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Since the length of the input x is provided in unary, that is, by the number of characters
it contains, its length n can be written in binary on a work tape in space O(log n) by
counting the number of characters in x. Since it is not difficult to show that any power of
a k-bit binary number can be computed by a DTM in work space O(k), it follows that any
fixed polynomial in n can be computed by a DTM in work space O(k) = O(log n). (See
Problem 8.18.)

To show that DTM ACCEPTANCE is in P, we design a Turing machine that accepts the
“Yes” instances in polynomial time. This machine copies the unary string of length n to one
of its work tapes. Given the description of the DTM M , it simulates M with a universal
Turing machine on input w. When it completes a step, it advances the head on the work
tape containing n in unary, declaring the instance of DTM ACCEPTANCE accepted if M
terminates without using more than n steps. By definition, it will complete its simulation of
M in at most n of M ’s steps each of which uses a constant number of steps on the simulating
machine. That is, it accepts a “Yes” instance of DTM ACCEPTANCE in time polynomial in
the length of the input.

8.10 NP-Complete Problems
As mentioned above, the NP-complete problems are the problems in NP that are the most
difficult to solve. We have shown that NP ⊆ PSPACE ⊆ EXPTIME or that every problem in
NP, including the NP-complete problems, can be solved in exponential time. Since the NP-
complete problems are the hardest problems in NP, each of these is at worst an exponential-
time problem. Thus, we know that the NP-complete problems require either polynomial or
exponential time, but we don’t know which.

The CIRCUIT SAT problem is to determine from a description of a circuit whether it can
be satisfied; that is, whether values can be assigned to its inputs such that the circuit output
has value 1. As mentioned above, this is our canonical NP-complete problem.

CIRCUIT SAT

Instance: A circuit description with n input variables {x1, x2, . . . , xn} for some integer n
and a designated output gate.
Answer: “Yes” if there is an assignment of values to the variables such that the output of the
circuit has value 1.

As shown in Section 3.9.6, CIRCUIT SAT is an NP-complete problem. The goal of this
problem is to recognize the “Yes” instances of CIRCUIT SAT, instances for which there are
values for the input variables such that the circuit has value 1.

In Section 3.9.6 we showed that CIRCUIT SAT described above is NP-complete by demon-
strating that for every decision problem P in NP an instance w of P and an NDTM M that
accepts “Yes” instances of P can be translated by a polynomial-time (actually, a log-space)
DTM into an instance c of CIRCUIT SAT such that w is a “Yes” instance of P if and only if c
is a “Yes” instance of CIRCUIT SAT.

Although it suffices to reduce problems in NP via a polynomial-time transformation to an
NP-complete problem, each of the reductions given in this chapter can be done by a log-space
transformation. We now show that a variety of other problems are NP-complete.
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8.10.1 NP-Complete Satisfiability Problems
In Section 3.9.6 we showed that SATISFIABILITY defined below is NP-complete. In this sec-
tion we demonstrate that two variants of this language are NP-complete by simple extensions
of the basic proof that CIRCUIT SAT is NP-complete.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn} and a sequence of clauses
C = (c1, c2, . . . , cm), where each clause ci is a subset of X .
Answer: “Yes” if there is a (satisfying) assignment of values for the variables {x1, x2, . . . ,
xn} over the set B such that each clause has at least one literal whose value is 1.

The two variants of SATISFIABILITY are 3-SAT, which has at most three literals in each
clause, and NAESAT, in which not all literals in each clause have the same value.

3-SAT

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, and a sequence of clauses
C = (c1, c2, . . . , cm), where each clause ci is a subset of X containing at most three
literals.
Answer: “Yes” if there is an assignment of values for variables {x1, x2, . . . , xn} over the set
B such that each clause has at least one literal whose value is 1.

THEOREM 8.10.1 3-SAT is NP-complete.

Proof The proof that SATISFIABILITY is NP-complete also applies to 3-SAT because each
of the clauses produced in the transformation of instances of CIRCUIT SAT has at most three
literals per clause.

NAESAT

Instance: An instance of 3-SAT.
Answer: “Yes” if each clause is satisfiable when not all literals have the same value.

NAESAT contains as its “Yes” instances those instances of 3-SAT in which the literals in
each clause are not all equal.

THEOREM 8.10.2 NAESAT is NP-complete.

Proof We reduce CIRCUIT SAT to NAESAT using almost the same reduction as for 3-SAT.
Each gate is replaced by a set of clauses. (See Fig. 8.11.) The only difference is that we
add the new literal y to each two-literal clause associated with AND and OR gates and to
the clause associated with the output gate. Clearly, this reduction can be performed in de-
terministic log-space. Since a “Yes” instance of NAESAT can be verified in nondeterministic
polynomial time, NAESAT is in NP. We now show that it is NP-hard.

Given a “Yes” instance of CIRCUIT SAT, we show that the instance of 3-SAT is a “Yes”
instance. Since every clause is satisfied in a “Yes” instance of CIRCUIT SAT, every clause of
the corresponding instance of NAESAT has at least one literal with value 1. The clauses that
don’t contain the literal y by their nature have not all literals equal. Those containing y can
be made to satisfy this condition by setting y to 0, thereby providing a “Yes” instance of
NAESAT.

Now consider a “Yes” instance of NAESAT produced by the mapping from CIRCUIT

SAT. Replacing every literal by its complement generates another “Yes” instance of NAESAT



c©John E Savage 8.10 NP-Complete Problems 357

Step Type Corresponding Clauses

(i READ x) (gi ∨ x) (gi ∨ x)

(i NOT j) (gi ∨ gj) (gi ∨ gj)

(i OR j k) (gi ∨ gj ∨ y) (gi ∨ gk ∨ y) (gi ∨ gj ∨ gk)

(i AND j k) (gi ∨ gj ∨ y) (gi ∨ gk ∨ y) (gi ∨ gj ∨ gk)

(i OUTPUT j) (gj ∨ y)

Figure 8.11 A reduction from CIRCUIT SAT to NAESAT is obtained by replacing each gate
in a “Yes” instance of CIRCUIT SAT by a set of clauses. The clauses used in the reduction from
CIRCUIT SAT to 3-SAT (see Section 3.9.6) are those shown above with the literal y removed. In
the reduction to NAESAT the literal y is added to the 2-literal clauses used for AND and OR gates
and to the output clause.

since the literals in each clause are not all equal, a property that applies before and after
complementation. In one of these “Yes” instances y is assigned the value 0. Because this is a
“Yes” instance of NAESAT, at least one literal in each clause has value 1; that is, each clause
is satisfiable. This implies that the original CIRCUIT SAT problem is satisfiable. It follows
that an instance of CIRCUIT SAT has been translated into an instance of NAESAT so that the
former is a “Yes” instance if and only if the latter is a “Yes” instance.

8.10.2 Other NP-Complete Problems
This section gives a sampling of additional NP-complete problems. Following the format of
the previous section, we present each problem and then give a proof that it is NP-complete.
Each proof includes a reduction of a problem previously shown NP-complete to the current
problem. The succession of reductions developed in this book is shown in Fig. 8.12.

INDEPENDENT SET

Instance: A graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices of G such that there is no edge in E between
them.

THEOREM 8.10.3 INDEPENDENT SET is NP-complete.

Proof INDEPENDENT SET is in NP because an NDTM can propose and then verify in
polynomial time a set of k independent vertices. We show that INDEPENDENT SET is NP-
hard by reducing 3-SAT to it. We begin by showing that a restricted version of 3-SAT, one
in which each clause contains exactly three literals, is also NP-complete. If for some variable
x, both x and x are in the same clause, we eliminate the clause since it is always satisfied.
Second, we replace each 2-literal clause (a∨ b) with the two 3-literal clauses (a∨ b∨ z) and
(a∨ b∨ z), where z is a new variable. Since z is either 0 or 1, if all clauses are satisfied then
(a∨ b) has value 1 in both causes. Similarly, a clause with a single literal can be transformed
to one containing three literals by introducing two new variables and replacing the clause
containing the single literal with four clauses each containing three literals. Since adding
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SUBSET SUMTASK SEQUENCING

INDEPENDENT SET 3-COLORING

SATISFIABILITY NAESAT

CIRCUIT SAT

3-SAT

EXACT COVER

0-1 INT. PROGR.

Figure 8.12 The succession of reductions used in this chapter.

distinct new variables to each clause that contains fewer than three literals can be done in
log-space, this new problem, which we also call 3-SAT, is also NP-complete.

We now construct an instance of INDEPENDENT SET from this new version of 3-SAT

in which k is equal to the number of clauses. (See Fig. 8.13.) Its graph G has one triangle
for each clause and vertices carry the names of the three literals in a clause. G also has an
edge between vertices carrying the labels of complementary literals.

Consider a “Yes” instance of 3-SAT. Pick one literal with value 1 from each clause.
This identifies k vertices, one per triangle, and no edge exists between these vertices. Thus,
the instance of INDEPENDENT SET is a “Yes” instance. Conversely, a “Yes” instance of
INDEPENDENT SET on G has k vertices, one per triangle, and no two vertices carry the
label of a variable and its complement because all such vertices have an edge between them.
The literals associated with these independent vertices are assigned value 1, causing each
clause to be satisfied. Variables not so identified are assigned arbitrary values.

x3x2

x1

x3

x1

x2x3

x1

x2

Figure 8.13 A graph for an instance of INDEPENDENT SET constructed from the following
instance of 3-SAT: (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).
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3-COLORING

Instance: The description of a graph G = (V , E).
Answer: “Yes” if there is an assignment of three colors to vertices such that adjacent vertices
have different colors.

THEOREM 8.10.4 3-COLORING is NP-complete.

Proof To show that 3-COLORING is in NP, observe that a three-coloring of a graph can
be proposed in nondeterministic polynomial time and verified in deterministic polynomial
time.

We reduce NAESAT to 3-COLORING. Recall that an instance of NAESAT is an instance
of 3-SAT. A “Yes” instance of NAESAT is one for which each clause is satisfiable with not
all literals equal. Let an instance of NAESAT consist of m clauses C = (c1, c2, . . . , cm)
containing exactly three literals from the set X = {x1, x1, x2, x2, . . . , xn, xn} of literals in
n variables. (Use the technique introduced in the proof of Theorem 8.10.3 to insure that
each clause in an instance of 3-SAT has exactly three literals per clause.)

Given an instance of NAESAT, we construct a graph G in log-space and show that this
graph is three-colorable if and only if the instance of NAESAT is a “Yes” instance.

The graph G has a set of n variable triangles, one per variable. The vertices of the
triangle associated with variable xi are {ν, xi, xi}. (See Fig. 8.14.) Thus, all the variable
triangles have one vertex in common. For each clause containing three literals we construct
one clause triangle per clause. If clause cj contains literals λj1 , λj2 , and λj3 , its associated
clause triangle has vertices labeled (j, λj1), (j, λj2), and (j, λj3). Finally, we add an edge
between the vertex (j, λjk) and the vertex associated with the literal λjk .

We now show that an instance of NAESAT is a “Yes” instance if and only if the graph G
is three-colorable. Suppose the graph is three-colorable and the colors are {0, 1, 2}. Since

(2, x1)(1, x1)

(1, x2) (2, x3)

x1 x1 x2 x3 x3

(1, x3) (2, x2)

x2

ν

Variable Triangle

Clause Triangle

Figure 8.14 A graph G corresponding to the clauses c1 = {x1, x2, x3} and c2 = {x1, x2, x3}
in an instance of NAESAT. It has one variable triangle for each variable and one clause triangle for
each clause.
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three colors are needed to color the vertices of a triangle and the variable triangles have a
vertex labeled ν in common, assume without loss of generality that this common vertex has
color 2. The other two vertices in each variable triangle are assigned value 0 or 1, values we
give to the associated variable and its complement.

Consider now the coloring of clause triangles. Since three colors are needed to color
vertices of a clause triangle, consider vertices with colors 0 and 1. The edges between these
clause vertices and the corresponding vertices in variable triangles have different colors at
each end. Let the literals in the clause triangles be given values that are the Boolean comple-
ment of their colors. This provides values for literals that are consistent with the values of
variables and insures that not all literals in a clause have the same value. The third vertex in
each triangle has color 2. Give its literal a value consistent with the value of its variable. It
follows that the clauses are a “Yes” instance of NAESAT.

Suppose, on the other hand, that a set of clauses is a “Yes” instance of NAESAT. We
show that the graph G is three-colorable. Assign color 2 to vertex ν and colors 0 and 1 to
vertices labeled xi and xi based on the values of these literals in the “Yes” instance. Consider
two literals in clause cj that are not both satisfied. If xi (xi) is one of these, give the vertex
labeled (j, xi) ((j, xi)) the value that is the Boolean complement of the color of xi (xi) in
its variable triangle. Do the same for the other literal. Since the third literal has the same
value as one of the other two literals (they have different values), let its vertex have color 2.
Then G is three-colorable. Thus, G is a “Yes” instance of 3-COLORING if and only if the
corresponding set of clauses is a “Yes” instance of NAESAT.

EXACT COVER

Instance: A set S = {u1, u2, . . . , up} and a family {S1, S2, . . . , Sn} of subsets of S.
Answer: “Yes” if there are disjoint subsets Sj1 , Sj2 , . . . , Sjt such that ∪1≤i≤tSji = S.

THEOREM 8.10.5 EXACT COVER is NP-complete.

Proof It is straightforward to show that EXACT COVER is in NP. An NDTM can simply
select the subsets and then verify in time polynomial in the length of the input that these
subsets are disjoint and that they cover the set S.

We now give a log-space reduction from 3-COLORING to EXACT COVER. Given an
instance of 3-COLORING, that is, a graph G = (V , E), we construct an instance of EXACT

COVER, namely, a set S and a family of subsets of S such that G is a “Yes” instance of
3-COLORING if and only if the family of sets is a “Yes” instance of EXACT COVER.

As the set S we choose S = V ∪ {< e, i > | e ∈ E, 0 ≤ i ≤ 2} and as the family
of subsets of S we choose the sets Sv,i and Re,i defined below for v ∈ V , e ∈ E and
0 ≤ i ≤ 2:

Sv,i = {v} ∪ {< e, i > | e is incident on v ∈ V }
Re,i = {< e, i >}

Let G be three-colorable. Then let cv , an integer in {0, 1, 2}, be the color of vertex v.
We show that the subsets Sv,cv for v ∈ V and Re,i for < e, i > /∈ Sv,cv for any v ∈ V
are an exact cover. If e = (v, w) ∈ E, then cv /= cw and Sv,cv and Sw,cw are disjoint. By
definition the sets Re,i are disjoint from the other sets. Furthermore, every element of S is
in one of these sets.

On the other hand, suppose that S has an exact cover. Then, for each v ∈ V , there is a
unique cv , 0 ≤ cv ≤ 2, such that v ∈ Sv,cv . To show that G has a three-coloring, assume
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that it doesn’t and establish a contradiction. Since G doesn’t have a three-coloring, there is
an edge e = (v, w) such that cv = cw, which contradicts the assumption that S has an
exact cover. It follows that G has a three-coloring if and only if S has an exact cover.

SUBSET SUM

Instance: A set Q = {a1, a2, . . . , an} of positive integers and a positive integer d.
Answer: “Yes” if there is a subset of Q that adds to d.

THEOREM 8.10.6 SUBSET SUM is NP-complete.

Proof SUBSET SUM is in NP because a subset can be nondeterministically chosen in time
equal to n and an accepting choice verified in a polynomial number of steps by adding up
the chosen elements of the subset and comparing the result to d.

To show that SUBSET SUM is NP-hard, we give a log-space reduction of EXACT COVER

to it. Given an instance of EXACT COVER, namely, a set S = {u1, u2, . . . , up} and a family
{S1, S2, . . . , Sn} of subsets of S, we construct the instance of SUBSET SUM characterized
as follows. We let β = n + 1 and d = βn−1 +βn−2 + · · ·+ β0 = (βn − 1) /(β− 1). We
represent the element ui ∈ S by the integer βi−1, 1 ≤ i ≤ n, and represent the set Sj by
the integer aj that is the sum of the integers associated with the elements contained in Sj .
For example, if p = n = 3, S1 = {u1, u3}, S2 = {u1, u2}, and S3 = {u2}, we represent
S1 by a1 = β2 + β0, S2 by a2 = β + β0, and S3 by a3 = β. Since S1 and S3 forms an
exact cover of S, a1 + a3 = β2 + β + 1 = d.

Thus, given an instance of EXACT COVER, this polynomial-time transformation pro-
duces an instance of SUBSET SUM. We now show that the instance of the former is a “Yes”
instance if and only if the instance of the latter is a “Yes” instance. To see this, observe that
in adding the integers corresponding to the sets in an EXACT COVER in base β there is no
carry from one power of β to the next. Thus the coefficient of βk is exactly the number
of times that uk+1 appears in each of the sets corresponding to a set of subsets of S. The
subsets form a “Yes” instance of EXACT COVER exactly when the corresponding integers
contain each power of β exactly once, that is, when the integers sum to d.

TASK SEQUENCING

Instance: Positive integers t1, t2, . . . , tr, which are execution times, d1, d2, . . . , dr, which
are deadlines, p1, p2, . . . , pr, which are penalties, and integer k ≥ 1.
Answer: “Yes” if there is a permutation π of {1, 2, . . . , r} such that




r∑

j=1

[ if tπ(1) + tπ(2) + · · · + tπ(j) > dπ(j) then pπ(j) else 0]



 ≤ k

THEOREM 8.10.7 TASK SEQUENCING is NP-complete.

Proof TASK SEQUENCING is in NP because a permutation π for a “Yes” instance can be
verified as a satisfying permutation in polynomial time. We now give a log-space reduction
of SUBSET SUM to TASK SEQUENCING.

An instance of SUBSET SUM is a positive integer d and a set Q = {a1, a2, . . . , an} of
positive integers. A “Yes” instance is one such that a subset of Q adds to d. We translate
an instance of SUBSET SUM to an instance of TASK SEQUENCING by setting r = n,
ti = pi = ai, di = d, and k = (

∑
i ai) − d. Consider a “Yes” instance of this TASK
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SEQUENCING problem. Then the following inequality holds:




r∑

j=1

[ if aπ(1) + aπ(2) + · · · + aπ(j) > d, then aπ(j) else 0]



 ≤ k

Let q be the expression in parentheses in the above inequality. Then q = aπ(l+1) + aπ(l+2)

+ · · · + aπ(n), where l is the integer for which p = aπ(1) + aπ(2) + · · · + aπ(l) ≤ d and
p + aπ(l+1) > d. By definition p + q =

∑
i ai. It follows that q ≥

∑
i ai − d. Since

q ≤ k =
∑

i ai − d, we conclude that p = d or that the instance of TASK SEQUENCING

corresponds to a “Yes” instance of SUBSET SUM. Similarly, consider a “Yes” instance of
SUBSET SUM. It follows from the above argument that there is a permutation such that the
instance of TASK SEQUENCING is a “Yes” instance.

The following NP-complete problem is closely related to the P-complete problem LINEAR

INEQUALITIES. The difference is that the vector x must be a 0-1 vector in the case of 0-1
INTEGER PROGRAMMING, whereas in LINEAR INEQUALITIES it can be a vector of rationals.
Thus, changing merely the conditions on the vector x elevates the problem from P to NP and
makes it NP-complete.

0-1 INTEGER PROGRAMMING

Instance: An n × m matrix A and a column n-vector b, both over the ring of integers for
integers n and m.
Answer: “Yes” if there is a column m-vector x over the set {0, 1} such that Ax = b.

THEOREM 8.10.8 0-1 INTEGER PROGRAMMING is NP-complete.

Proof To show that 0-1 INTEGER PROGRAMMING is in NP, we note that a 0-1 vector x
can be chosen nondeterministically in n steps, after which verification that it is a solution to
the problem can be done in O(n2) steps on a RAM and O(n4) steps on a DTM.

To show that 0-1 INTEGER PROGRAMMING is NP-hard we give a log-space reduc-
tion of 3-SAT to it. Given an instance of 3-SAT, namely, a set of literals X = (x1,
x1, x2, x2, . . . , xn, xn) and a sequence of clauses C = (c1, c2, . . . , cm), where each clause ci

is a subset of X containing at most three literals, we construct an m×p matrix A = [B | C],
where B = [bi,j ] for 1 ≤ i, j ≤ n and C = [cr,s] for 1 ≤ r ≤ n and 1 ≤ s ≤ pm. We
also construct a column p-vector d as shown below, where p = (m + 1)n. The entries of B
and C are defined below.

bi,j =

{
1 if xj ∈ ci for 1 ≤ j ≤ n

−1 if xj ∈ ci for 1 ≤ j ≤ n

cr,s =

{
−1 if (r − 1)n + 1 ≤ s ≤ rn

0 otherwise

Since no one clause contains both xj and xj , this definition of ai,j is consistent.
We also let di, the ith component of d, satisfy di = 1 − qi, where qi is the number of

complemented variables in ci. Thus, the matrix A has the form given below, where B is an
m×n matrix and each row of A contains n instances of –1 outside of B in non-overlapping
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columns:

A =




B

−1 −1 . . . −1 0 . . . 0 0 . . . 0

0 0 0 −1 . . . −1
... 0

...
...

. . . 0 . . . 0

0 0 . . . 0 0 . . . 0 −1 . . . −1





We show that the instance of 3-SAT is a “Yes” instance if and only if this instance of 0-1
INTEGER PROGRAMMING is a “Yes” instance, that is, if and only if Ax = d.

We write the column p-vector x as the concatenation of the column m-vector u and
the column mn-vector v. It follows that Ax = b if and only if Au ≥ b. Now consider
the ith component of Au. Let u select ki uncomplemented and li complemented variables
of clause ci. Then, Au ≥ b if and only if ki − li ≥ di = 1 − qi or ki + (qi − li) ≥ 1
for all i. Now let xi = ui for 1 ≤ i ≤ n. Then ki and qi − li are the numbers of
uncomplemented and complemented variables in ci that are set to 1 and 0, respectively.
Since ki + (qi − li) ≥ 1, ci is satisfied, as are all clauses, giving us the desired result.

8.11 The Boundary Between P and NP
It is important to understand where the boundary lies between problems in P and the NP-
complete problems. While this topic is wide open, we shed a modest amount of light on it by
showing that 2-SAT, the version of 3-SAT in which each clause has at most two literals, lies on
the P-side of this boundary, as shown below. In fact, it is in NL, which is in P.

THEOREM 8.11.1 2-SAT is in NL.

Proof Given an instance I of 2-SAT, we first insure that each clause has exactly two distinct
literals by adding to each one-literal clause a new literal z that is not used elsewhere. We
then construct a directed graph G = (V , E) with vertices V labeled by the literals x and x
for each variable x appearing in I . This graph has an edge (α, β) in E directed from vertex
α to vertex β if the clause (α ∨ β) is in I . If (α ∨ β) is in I , so is (β ∨ α) because of
commutativity of ∨. Thus, if (α, β) ∈ E, then (β, α) ∈ E also. (See Fig. 8.15.) Note
that (α, β) /= (β, α) because this requires that β = α, which is not allowed. Let α /= γ.
It follows that if there is a path from α to γ in G, there is a distinct path from γ to α
obtained by reversing the directions of each edge on the path and replacing the literals by
their complements.

To understand why these edges are chosen, note that if all clauses of I are satisfied and
(α∨ β) is in I , then α = 1 implies that β = 1. This implication relation, denoted α ⇒ β,
is transitive. If there is a path (α1, α2, . . . , αk) in G, then there are clauses (α1 ∨ α2),
(α2 ∨ α3), . . . , (αk−1 ∨ αk) in I . If all clauses are satisfied and if the literal α1 = 1, then
each un-negated literal on this path must have value 1.

We now show that an instance I is a “No” instance if and only if there is a variable x
such that there is a path in G from x to x and one from x to x.

If there is a variable x such that such paths exists, this means that x ⇒ x and x ⇒ x
which is a logical contradiction. This implies that the instance I is a “No” instance.

Conversely, suppose I is a “No” instance. To prove there is a variable x such that there
are paths from vertex x to vertex x and from x to x, assume that for no variable x does this
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x1

x2 x2

x1

x3

x3

Figure 8.15 A graph capturing the implications associated with the following satisfiable instance
of 2-SAT: (x3 ∨ x2) ∧ (x3 ∨ x1) ∧ (x3 ∨ x2) ∧ (x1 ∨ x2) ∧ (x3 ∨ x1).

condition hold and show that I is a “Yes” instance, that is, every clause is satisfied, which
contradicts the assumption that I is a “No” instance.

Identify a variable that has not been assigned a value and let α be one of the two cor-
responding literals such that there is no directed path in G from the vertex α to α. (By
assumption, this must hold for at least one of the two literals associated with x.) Assign
value 1 to α and each literal λ reachable from it. (This assigns values to the variables iden-
tified by these literals.) If these assignments can be made without assigning a variable both
values 0 and 1, each clause can be satisfied and I is “Yes” instance rather than a “No” one, as
assumed. To show that each variable is assigned a single value, we assume the converse and
show that the conditions under which values are assigned to variables by this procedure are
contradicted. A variable can be assigned contradictory values in two ways: a) on the current
step the literals λ and λ are both reachable from α and assigned value 1, and b) a literal λ
is reachable from α on the current step that was assigned value 0 on a previous step. For
the first case to happen, there must be a path from α to vertices λ and λ. By design of the
graph, if there is a path from α to λ, there is a path from λ to α. Since there is a path from
α to λ, there must be a path from α to α, contradicting the assumption that there are no
such paths. In the second case, let a λ be assigned 1 on the current step that was assigned 0
on a previous step. It follows that λ was given value 1 on that step. Because there is a path
from α to λ, there is one from λ to α and our procedure, which assigned λ value 1 on the
earlier step, must have assigned α value 1 on that step also. Thus, α had the value 0 before
the current step, contradicting the assumption that it was not assigned a value.

To show that 2-SAT is in NL, recall that NL is closed under complements. Thus, it suf-
fices to show that “No” instances of 2-SAT can be accepted in nondeterministic logarithmic
space. By the above argument, if I is a “No” instance, there is a variable x such that there is
a path in G from x to x and from x to x. Since the number of vertices in G is at most linear
in n, the length of I (it may be as small as O(

√
n)), an NDTM can propose and then verify

in space O(log n) a path in G from x to x and back by checking that the putative edges are
edges of G, that x is the first and last vertex on the path, and that x is encountered before
the end of the path.
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8.12 PSPACE-Complete Problems
PSPACE is the class of decision problems that are decidable by a Turing machine in space poly-
nomial in the length of the input. Problems in PSPACE are potentially much more complex
than problems in P.

The hardest problems in PSPACE are the PSPACE-complete problems. (See Section 8.8.)
Such problems have two properties: a) they are in PSPACE and b) every problem in PSPACE
can be reduced to them by a polynomial-time Turing machine. The PSPACE-complete prob-
lems are the hardest problems in PSPACE in the sense that if they are in P, then so are all
problems in PSPACE, an unlikely prospect.

We now establish that QUANTIFIED SATISFIABILITY defined below is PSPACE-complete.
We also show that GENERALIZED GEOGRAPHY, a game played on a graph, is PSPACE-
complete by reducing QUANTIFIED SATISFIABILITY to it. A characteristic shared by many
important PSPACE-complete problems and these two problems is that they are equivalent to
games on graphs.

8.12.1 A First PSPACE-Complete Problem
Quantified Boolean formulas use existential quantification, denoted ∃, and universal quan-
tification, denoted ∀. Existential quantification on variable x1, denoted ∃x1, means “there
exists a value for the Boolean variable x1,” whereas universal quantification on variable x2,
denoted ∀x2, means “for all values of the Boolean variable x2.” Given a Boolean formula such
as (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3), a quantification of it is a collection of
universal or existential quantifiers, one per variable in the formula, followed by the formula.
For example,

∀x1∃x2∀x3[(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)]

is a quantified formula. Its meaning is “for all values of x1, does there exist a value for x2 such
that for all values of x3 the formula (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3) is satisfied?”
In this case the answer is “No” because for x1 = 1, the function is not satisfied with x3 = 0
when x2 = 0 and is not satisfied with x3 = 1 when x2 = 1. However, if the third quantifier
is changed from universal to existential, then the quantified formula is satisfied. Note that the
order of the quantifiers is important. To see this, observe that under the quantification order
∀x1∀x3∃x2 that the quantified formula is satisfied.

QUANTIFIED SATISFIABILITY consists of satisfiable instances of quantified Boolean for-
mulas in which each formula is expressed as a set of clauses.

QUANTIFIED SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn}, a sequence of clauses C =
(c1, c2, . . . , cm), where each clause ci is a subset of X , and a sequence of quantifiers
(Q1, Q2, . . . , Qn), where Qj ∈ {∀, ∃}.
Answer: “Yes” if under the quantifiers Q1x1Q2x2 · · ·Qnxn, the clauses c1, c2, . . . , cm are
satisfied, denoted

Q1x1Q2x2 · · ·Qnxn [φ]

where the formula φ = c1∧c2∧· · ·∧cm is in the product-of-sums form. (See Section 2.2.)



366 Chapter 8 Complexity Classes Models of Computation

In this section we establish the following result, stronger than PSPACE-completeness of
QUANTIFIED SATISFIABILITY: we show it is complete for PSPACE under log-space trans-
formations. Reductions of this type are potentially stronger than polynomial-time reductions
because the transformation is executed in logarithmic space, not polynomial time. While it
is true that every log-space transformation is a polynomial-time transformation (see Theo-
rem 8.5.8), it is not known if the reverse is true. We prove this result in two stages: we first
show that QUANTIFIED SATISFIABILITY is in PSPACE and then that it is hard for PSPACE.

LEMMA 8.12.1 QUANTIFIED SATISFIABILITY is in PSPACE.

Proof To show that QUANTIFIED SATISFIABILITY is in PSPACE we evaluate in polyno-
mial space a circuit, Cqsat, whose value is 1 if and only if the instance of QUANTIFIED

SATISFIABILITY is a “Yes” instance. The circuit Cqsat is a tree all of whose paths from the
inputs to the output (root of the tree) have the same length, each vertex is either an AND

gate or an OR gate, and each input has value 0 or 1. (See Fig. 8.16.) The gate at the root of
the tree is associated with the variable x1, the gates at the next level are associated with x2,
etc. The type of gate at the jth level is determined by the jth quantifier Qj and is AND if
Qj = ∀ and OR if Qj = ∃. The leaves correspond to all 2n the values of the n variables:
at each level of the tree the left and right branches correspond to the values 0 and 1 for the
corresponding quantified variable. Each leaf of the tree contains the value of the formula φ
for the values of the variables leading to that leaf. In the example of Fig. 8.16 the leftmost
leaf has value 1 because on input x1 = x2 = x3 = 0 each of the three clauses {x1, x2, x3},
{x1, x2, x3} and {x1, x2, x3} is satisfied.

It is straightforward to see that the value at the root of the tree is 1 if all clauses are
satisfied under the quantifiers Q1x1Q2x2 · · ·Qnxn and 0 otherwise. Thus, the circuit solves
the QUANTIFIED SATISFIABILITY problem and its complement. (Note that PSPACE =
coPSPACE, as shown in Theorem 8.6.1.)

0 1

x3

0 1

x2

x1

10

0010

0111 1001

0

1 0

Figure 8.16 A tree circuit constructed from the instance ∀x1∃x2∀x3φ for φ = (x1 ∨ x2 ∨
x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) of QUANTIFIED SATISFIABILITY. The eight values at
the leaves of the tree are the values of φ on the eight different assignments to (x1, x2, x3).
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tree eval(n, φ, Q, d, w);
if d = n then

return(evaluate(φ, w));
else

if first(Q) = ∃ then
return(tree eval(n, φ, rest(Q), d + 1, w0)

OR tree eval(n, φ, rest(Q), d + 1, w1));
else
return(tree eval(n, φ, rest(Q), d + 1, w0)

AND tree eval(n, φ, rest(Q), d + 1, w1));

Figure 8.17 A program for the recursive procedure tree eval(n, φ, Q, d, w). The tuple w

keeps track of the path taken into the tree.

The circuit Cqsat has size exponential in n because there are 2n values for the n variables.
However, it can be evaluated in polynomial space, as we show. For this purpose consider the
recursive procedure tree eval(n, φ, Q, d, w) in Fig. 8.17 that evaluates Cqsat. Here n is
the number of variables in the quantization, d is the depth of recursion, φ is the expression
over which quantification is done, Q is a sequence of quantifiers, and w holds the values for
d variables. Also, first(Q) and rest(Q) are the first and all but the first components of
Q, respectively. When d = 0, Q = (Q1, Q2, . . . , Qn) and Q1x1Q2x2 · · ·Qnxn φ is the
expression to evaluate. We show that tree eval(n, φ, Q, 0, ε) can be computed in space
quadratic in the length of an instance of QUANTIFIED SATISFIABILITY.

When d = n, the procedure has reached a leaf of the tree and the string w contains
values for the variables x1, x2, . . . , xn, in that order. Since all variables of φ are known when
d = n, φ can be evaluated. Let evaluate(φ, w) be the function that evaluates φ with values
specified by w. Clearly tree eval(n, φ, Q, 0, ε) is the value of Q1x1Q2x2 · · ·Qnxn φ.

We now determine the work space needed to compute tree eval(n, φ, Q, d, w) on
a DTM. (The discussion in the proof of Theorem 8.5.5 is relevant.) Evaluation of this
procedure amounts to a depth-first traversal of the tree. An activation record is created for
each call to the procedure and is pushed onto a stack. Since the depth of the tree is n, at most
n + 1 records will be on the stack. Since each activation record contains a string of length at
most O(n), the total space used is O(n2). And the length of Q1x1Q2x2 · · ·Qnxn φ is at
least n, the space is polynomial in the length of this formula.

LEMMA 8.12.2 QUANTIFIED SATISFIABILITY is log-space hard for PSPACE.

Proof Our goal is to show that every decision problem P ∈ PSPACE can be reduced in
log-space to an instance of QUANTIFIED SATISFIABILITY. Instead, we show that every such
P can be reduced in log-space to a “No” instance of QUANTIFIED SATISFIABILITY (we call
this QUANTIFIED UNSATISFIABILITY). But a “No” instance is one for which the formula
φ, which is in product-of-sums form, is not satisfied under the specified quantification or
that its Boolean complement, which is in sum-of-products expansion (SOPE) form, is sat-
isfied under a quantification in which ∀ is replaced by ∃ and vice versa. Exchanging “Yes”
and “No” instances of decision problems (which we can do since PSPACE is closed un-
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der complements), we have that every problem in coPSPACE can be reduced in log-space
to QUANTIFIED SATISFIABILITY. However, since PSPACE = coPSPACE, we have the
desired result.

Our task now is to show that every problem P ∈ PSPACE can be reduced in log-space
to an instance of QUANTIFIED UNSATISFIABILITY. Let L ∈ PSPACE be the language
of “Yes” instances of P and let M be the DTM deciding L. Instances of QUANTIFIED

UNSATISFIABILITY will be quantified formulas in SOPE form that describe conditions on
the configuration graph G(M , w) of M on input w. We associate a Boolean vector with
each vertex in G(M , w) and assume that G(M , w) has one initial and final vertex associated
with the vectors a and b, respectively. (We can make the last assumption because M can be
designed to enter a cleanup phase in which it prints blanks in all non-blank tape cells.)

Let c and d be vector encodings of arbitrary configurations c and d of G(M , w). We
construct formulas ψi(c, d), 0 ≤ i ≤ k, in SOPE form that are satisfied if and only if
there exists a path from c to d in G(M , w) of length at most 2i (it computes the predi-
cate PATH(c, d, 2i) introduced in the proof of Theorem 8.5.5). Then a “Yes” instance of
QUANTIFIED UNSATISFIABILITY is the formula ψk(a, b), where a and b are encodings
of the initial and final vertices of G(M , w) for k sufficiently large that a polynomial-space
computation can be done in time 2k. Since, as seen in Theorem 8.5.6, a deterministic com-
putation in space S is done in time O(2S), it suffices for k to be polynomial in the length
of the input.

The formula ψ0(c, d) is satisfiable if either c = d or d follows from c in one step. Such
formulas are easily computed from the descriptions of M and w. ψi(c, d) can be expressed
as shown below, where the existential quantification is over all possible intermediate config-
urations e of M . (See the proof of Theorem 8.5.5 for the representation of PATH(c, d, 2i)
in terms of PATH(c, e, 2i−1) and PATH(e, d, 2i−1).)

ψi(c, d) = ∃e [ψi−1(c, e) ∧ ψi−1(e, d)] (8.1)

Note that ∃e is equivalent to ∃e1∃e2 · · ·∃eq , where q is the length of e. Universal quantifi-
cation over a vector is expanded in a similar fashion.

Unfortunately, for i = k this recursively defined formula requires space exponential
in the size of the input. Fortunately, we can represent ψi(c, d) more succinctly using the
implication operator x ⇒ y, as shown below, where x ⇒ y is equivalent to x ∨ y. Note
that if x ⇒ y is TRUE, then either x is FALSE or x and y are both TRUE.

ψi(c, d) = ∃e [∀x∀y [(x = c ∧ y = e) ∨ (x = e ∧ y = d)] ⇒ ψi−1(x, y)] (8.2)

Here x = y denotes (x1 = y1) ∧ (x2 = y2) ∧ · · · ∧ (xq = yq), where (xi = yi) denotes
xiyi ∨ xiyi. Then, the formula in the outer square brackets of (8.2) is true when either
(x = c∧y = e)∨ (x = e∧y = d) is FALSE or this expression is TRUE and ψi−1(x, y) is
also TRUE. Because the contents of the outer square brackets are TRUE, the quantization on
x and y requires that ψi−1(c, e) and ψi−1(e, d) both be TRUE or that the formula given
in (8.1) be satisfied.

It remains to convert the expression for ψi(c, d) given above to SOPE form in log-space.
But this is straightforward. We replace g ⇒ h by g ∨ h, where g = (r ∧ s) ∨ (t ∧ u) and
r = (x = c), s = (y = e), t = (x = e), and u = (y = d). It follows that

g = (r ∨ s) ∧ (t ∨ u)

= (r ∧ t) ∨ (r ∧ u) ∨ (s ∧ t) ∨ (s ∧ u)



c©John E Savage 8.12 PSPACE-Complete Problems 369

Since each of r, s, t, and u can be expressed as a conjunction of q terms of the form

(xj = yj) and (xj = yj) = (xjyj ∨ xjyj), 1 ≤ i ≤ q, it follows that r, s, t, and u
can each be expressed as a disjunction of 2q terms. Each of the four terms of the form
(r ∧ t) consists of 4q2 terms, each of which is a conjunction of four literals. Thus, g is the
disjunction of 16q2 terms of four literals each.

Given the regular structure of this formula for ψi, it can be generated from a formula for
ψi−1 in space O(log q). Since 0 ≤ i ≤ k and k is polynomial in the length of the input, all
the formulas, including that for ψk, can be generated in log-space. By the above reasoning,
this formula is a “Yes” instance of QUANTIFIED UNSATISFIABILITY if and only if there is a
path in the configuration graph G(M , w) between the initial and final states.

Combining the two results, we have the following theorem.

THEOREM 8.12.1 QUANTIFIED SATISFIABILITY is log-space complete for PSPACE.

8.12.2 Other PSPACE-Complete Problems
An important version of QUANTIFIED SATISFIABILITY is ALTERNATING QUANTIFIED SAT-
ISFIABILITY.

ALTERNATING QUANTIFIED SATISFIABILITY

Instance: Instances of QUANTIFIED SATISFIABILITY that have an even number of quanti-
fiers that alternate between ∃ and ∀, with ∃ the first quantifier.
Answer: “Yes” if the instance is a “Yes” instance of QUANTIFIED SATISFIABILITY.

THEOREM 8.12.2 ALTERNATING QUANTIFIED SATISFIABILITY is log-space complete for
PSPACE.

Proof ALTERNATING QUANTIFIED SATISFIABILITY is in PSPACE because it is a special
case of QUANTIFIED SATISFIABILITY. We reduce QUANTIFIED SATISFIABILITY to AL-
TERNATING QUANTIFIED SATISFIABILITY in log-space as follows. If two universal quan-
tifiers appear in succession, we add an existential quantifier between them in a new variable,
say xl, and add the new clause {xl, xl} at the end of the formula φ. If two existential quan-
tifiers appear in succession, add universal quantification over a new variable and a clause
containing it and its negation. If the number of quantifiers is not even, repeat one or the
other of the above steps. This transformation at most doubles the number of variables and
clauses and can be done in log-space. The instance of ALTERNATING QUANTIFIED SATIS-
FIABILITY is a “Yes” instance if and only if the instance of QUANTIFIED SATISFIABILITY is
a “Yes” instance.

The new version of QUANTIFIED SATISFIABILITY is akin to a game in which universal
and existential players alternate. The universal player attempts to show a fact for all values of
its Boolean variable, whereas the existential player attempts to deny that fact by the choice of
its existential variable. It is not surprising, therefore, that many games are PSPACE-complete.
The geography game described below is of this type.

The geography game is a game for two players. They alternate choosing names of cities
in which the first letter of the next city is the last letter of the previous city until one of the two
players (the losing player) cannot find a name that has not already been used. (See Fig. 8.18.)
This game is modeled by a graph in which each vertex carries the name of a city and there is
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an edge from vertex u1 to vertex u2 if the last letter in the name associated with u1 is the first
letter in the name associated with u2. In general this graph is directed because an edge from
u1 to u2 does not guarantee an edge from u2 to u1.

GENERALIZED GEOGRAPHY

Instance: A directed graph G = (V , E) and a vertex v.
Answer: “Yes” if there is a sequence of (at most |V |) alternating vertex selections by two
players such that vertex v is the first selection by the first player and for each selection of
the first player and all selections of the second player of vertices adjacent to the previous
selection, the second player arrives at a vertex from which it cannot select a vertex not
previously selected.

THEOREM 8.12.3 GENERALIZED GEOGRAPHY is log-space complete for PSPACE.

Proof To show that GENERALIZED GEOGRAPHY is log-space complete for PSPACE, we
show that it is in PSPACE and that QUANTIFIED SATISFIABILITY can be reduced to it
in log-space. To establish the first result, we show that the outcome of GENERALIZED

GEOGRAPHY can be determined by evaluating a graph similar to the binary tree used to
show that QUANTIFIED SATISFIABILITY is realizable in PSPACE.

Given the graph G = (V , E) (see Fig. 8.18(a)), we construct a search graph (see
Fig. 8.18(b)) by performing a variant of depth-first search of G from v. At each vertex
we visit the next unvisited descendant, continuing until we encounter a vertex on the cur-
rent path, at which point we backtrack and try the next sibling of the current vertex, if any.
In depth-first search if a vertex has been visited previously, it is not visited again. In this
variant of the algorithm, however, a vertex is revisited if it is not on the current path. The
length of the longest path in this tree is at most |V | − 1 because each path can contain no
more than |V | vertices. The tree may have a number of vertices exponential in |V |.

At a leaf vertex a player has no further moves. The first player wins if it is the second
player’s turn at a leaf vertex and loses otherwise. Thus, a leaf vertex is labeled 1 (0) if the
first player wins (loses). To insure that the value at a vertex u is 1 if the two players reach u
and the first player wins, we assign OR operators to vertices at which the first player makes
selections and AND operators otherwise. (The output of a one-input AND or OR gate is the

OROR OR

ANDANDAND

OR 00OR

11

(a) (b)

Saugus

Danvers

Marblehead

Dedham

OR
Marblehead

ANDDanvers DedhamAND

Salem Mansfield

Figure 8.18 (a) A graph for the generalized geography game and (b) the search tree associated
with the game in which the start vertex is Marblehead.
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value of its input.) This provides a circuit that can be evaluated just as was the circuit Cqsat

used in the proof of Theorem 8.12.1. The “Yes” instances of GENERALIZED GEOGRAPHY

are such that the first player can win by choosing a first city. In Fig. 8.18 the value of the
root vertex is 0, which means that the first player loses by choosing to start with Marblehead
as the first city.

Vertices labeled AND or OR in the tree generated by depth-first search can have arbitrary
in-degree because the number of vertices that can be reached from a vertex in the original
graph is not restricted. The procedure tree eval described in the proof of Theorem 8.12.1
can be modified to apply to the evaluation of this DAG whose vertex in-degree is potentially
unbounded. (See Problem 8.30.) This modified procedure runs in space polynomial in the
size of the graph G.

We now show that ALTERNATING QUANTIFIED SATISFIABILITY (abbreviated AQSAT)
can be reduced in log-space to GENERALIZED GEOGRAPHY. Given an instance of AQSAT

such as that shown below, we construct an instance of GENERALIZED GEOGRAPHY, as
shown in Fig. 8.19. We assume without loss of generality that the number of quantifiers is
even. If not, add a dummy variable and quantify on it:

∃x1∀x2∃x3∀x4[(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x4)]

x1 ∨ x2 ∨ x3x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x4 ∨ x4

m

m

m

m

m

t

m

x3

x4

x2

x1

01

x1

01

x2

01

x3

01

x4

x1

x2

x4

x3

b

Figure 8.19 An instance of GENERALIZED GEOGRAPHY corresponding to an instance of
ALTERNATING QUANTIFIED SATISFIABILITY.
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The instance of GENERALIZED GEOGRAPHY corresponding to an instance of AQSAT

is formed by cascading a set of diamond-shaped subgraphs, one per variable (see Fig. 8.19),
and connecting the bottom vertex b in the last diamond to a set of vertices, one per clause.
An edge is drawn from a clause to a vertex associated with a literal (xi or xi) if that literal
is in the clause. The literal xi (xi) is associated with the middle vertex on the right-hand
(left-hand) side of a diamond. Thus, in the example, there is an edge from the leftmost
clause vertex to the left-hand vertex in the diamond for x3 and to the right-hand vertices in
diamonds for x1 and x2.

Let the geography game be played on this graph starting with the first player from the
topmost vertex labeled t. The first player can choose either the left or right path. The second
player has only one choice, taking it to the bottom of the first diamond, and the first player
now has only one choice, taking it to the top of the second diamond. The second player
now can choose a path to follow. Continuing in this fashion, we see that the first (second)
player can exercise a choice on the odd- (even-) numbered diamonds counting from the top.
Since the number of quantifiers is even, the choice at the bottom vertex labeled b belongs to
the second player. Observe that whatever choices are made within the diamonds, the vertices
labeled m and b are visited.

Because the goal of each player is to force the other player into a position from which
it has no moves, at vertex b the second player attempts to choose a clause vertex such that
the first player has no moves: that is, every vertex reachable from the clause vertex chosen by
the second player has already been visited. On the other hand, if all clauses are satisfiable,
then for every clause chosen by the second player there should be an edge from its vertex to
a diamond vertex that has not been previously visited. To insure that the first player wins if
and only if the instance of AQSAT used to construct this graph is a “Yes” instance, the first
player always chooses an edge according to the directions in Fig. 8.19. For example, it visits
the vertex labeled x1 if it wishes to set x1 = 1 because this means that the vertex labeled x1

is not visited on the path from t to b and can be visited by the first player on the last step of
the game. Since each vertex labeled m and b is visited before a clause vertex is visited, the
second player does not have a move and loses.

8.13 The Circuit Model of Computation
The complexity classes seen so far in this chapter are defined in terms of the space and
time needed to recognize languages with deterministic and nondeterministic Turing machines.
These classes generally help us to understand the complexity of serial computation. Circuit
complexity classes, studied in this section, help us to understand parallel computation.

Since a circuit is a fixed interconnection of gates, each circuit computes a single Boolean
function on a fixed number of inputs. Thus, to compute the unbounded set of functions
computed by a Turing machine, a family of circuits is needed. In this section we investigate
uniform and non-uniform circuit families. A uniform family of circuits is a potentially un-
bounded set of circuits for which there is a Turing machine that, given an integer n in unary
notation, writes a description of the nth circuit. We show that uniform circuits compute the
same functions as Turing machines.

As mentioned below, non-uniform families of circuits are so powerful that they can com-
pute functions not computed by Turing machines. Given the Church-Turing thesis, it doesn’t
make sense to assume non-uniform circuits as a model of computation. On the other hand, if
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we can develop large lower bounds on the size or depth of circuits without regard to whether or
not they are drawn from a uniform family, then such lower bounds apply to uniform families
as well and, in particular, to other models of computation, such as Turing machines. For this
reason non-uniform circuits are important.

A circuit is a form of unstructured parallel machine, since its gates can operate in parallel.
The parallel random-access machine (PRAM) introduced in Chapter 1 and examined in Chap-
ter 7 is another important parallel model of computation in terms of which the performance
of many other parallel computational models can be measured. In Section 8.14 we show that
circuit size and depth are related to number of processors and time on the PRAM. These results
emphasize the important role of circuits not only in the construction of machines, but also in
measuring the serial and parallel complexity of computational problems.

Throughout the following sections we assume that circuits are constructed from gates cho-
sen from the standard basis Ω0 = {AND, OR, NOT}.

We now explore uniform and non-uniform circuit families, thereby setting the stage for
the next chapter, in which methods for deriving lower bounds on the size of circuits are devel-
oped. After introducing uniform circuits we show that uniform families of circuits and Turing
machines compute the same functions. We then introduce a number of languages defined in
terms of the properties of families of circuits that recognize them.

8.13.1 Uniform Families of Circuits
Families of circuits are useful in characterizing decision problems in which the set of instances
is unbounded. One circuit in each family is associated with the “Yes” instances of each length:
it has value 1 on the “Yes” instances and value 0 otherwise.

Families of circuits are designed in Chapter 3 to simulate computations by finite-state,
random-access, and Turing machines on arbitrary numbers of inputs. For each machine M
of one of these types, there is a DTM S(M) such that on an input of length n, S(M) can
produce as output the description of a circuit on n inputs that computes exactly the same
function as does M on n inputs. (See the program in Fig. 3.27.) These circuits are generated
in a uniform fashion.

On the other hand, non-uniform circuit families can be used to define non-computable
languages. For example, consider the family in which the nth circuit, Cn, is designed to have
value 1 on those strings w of length n in the language L1 defined in Section 5.7 and value 0
otherwise. Such a circuit realizes the minterm defined by w. As shown in Theorem 5.7.4, L1

is not recursively enumerable; that is, there is no Turing machine that can recognize it.
This example motivates the need to identify families of circuits that compute functions

computable by Turing machines, that is, uniform families of circuits.

DEFINITION 8.13.1 A circuit family C = {C1, C2, C3, . . .} is a collection of logic circuits in
which Cn has n inputs and m(n) outputs for some function m : "→ .

A time-r(n) (space-r(n)) uniform circuit family is a circuit family for which there is a
deterministic Turing machine M such that for each integer n supplied in unary notation, namely
1n, on its input tape, M writes the description of Cn on its output tape using time (space) r(n).

A log-space uniform circuit family is one for which the temporary storage space used by a
Turing machine that generates it is O(log n), where n is the length of the input. The function
f : B∗ "→ B∗ is computed by C if for each n ≥ 1, f restricted to n inputs is the function
computed by Cn.
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8.13.2 Uniform Circuits Are Equivalent to Turing Machines
We now show that the functions computed by log-space uniform families of circuits and by
polynomial-time DTMs are the same. Since the family of functions computed by one-tape
and multi-tape Turing machines are the same (see Theorem 5.2.1), we prove the result only
for the standard one-tape Turing machine and proper resource functions (see Section 8.3).

THEOREM 8.13.1 Let p(n) be a polynomial and a proper function. Then every total function
f : B∗ "→ B∗ computed by a DTM in time p(n) on inputs of length n can be computed by a
log-space uniform circuit family C.

Proof Let fn : Bn "→ B∗ be the restriction to inputs of length n of the function f : B∗ "→
B∗ computed by a DTM M in time p(n). It follows that the number of bits in the word
fn(w) is at most p(n). Since the function computed by a circuit has a fixed-length output
and the length of fn(w) may vary for different inputs w of length n, we show how to create
a DTM M∗, a modified version of M , that computes f∗

n, a function that contains all the
information in the function fn. The value of f∗

n has at most 2p(n) bits on inputs of length
n. We show that M∗ produces its output in time O(p2(n)).

Let M∗ place a mark in the 2p(n)th cell on its tape (a cell beyond any reached during
a computation). Let it now simulate M , which is assumed to print its output in the first
k locations on the tape, k ≤ p(n). M∗ now recodes and expands this binary string into a
longer string. It does so by marking k cells to right of the output string (in at most k2 steps),
after which it writes every letter in the output string twice. That is, 0 appears as 00 and 1
as 11. Finally, the remaining 2(p(n)− k) cells are filled with alternating 0s and 1s. Clearly,
the value of fn can be readily deduced from the output, but the length of the value f∗

n is the
same on all inputs of length n.

A Turing machine MC that constructs the nth circuit from n represented in unary and a
description of M∗ invokes a slightly revised version of the program of Fig. 3.27 to construct
the circuit computing fn. This revised circuit contains placeholders for the values of the
n letters representing the input to M . The program uses space O(log p2(n)), which is
logarithmic in n.

We now show that the function computed by a log-space uniform family of circuits can be
computed by a polynomial-time Turing machine.

THEOREM 8.13.2 Let C be a log-space uniform circuit family. Then there exists a polynomial-time
Turing machine M that computes the same set of functions computed by the circuits in C.

Proof Let MC be the log-space TM that computes the circuit family C. We design the TM
M to compute the same set of functions on an input w of length n. M uses w to obtain a
unary representation for the input MC . It uses MC to write down a description of the nth
circuit on its work tape. It then computes the outputs of this circuit in time quadratic in the
length of the circuit. Since the length of the circuit is a polynomial in n because the circuit
is generated by a log-space TM (see Theorem 8.5.8), the running time of M is polynomial
in the length of w.

These two results can be generalized to uniform circuit families and Turing machines that
use more than logarithmic space and polynomial time, respectively. (See Problem 8.32.)
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In the above discussion we examine functions computed by Turing machines. If these
functions are characteristic functions, f : B∗ "→ B; that is, they have value 0 or 1, then
those strings for which f has value 1 define a language Lf . Also, associated with each language
L ⊆ B∗ is a characteristic function fL : B∗ "→ B that has value 1 on only those strings in L.

Consider now a language L ⊆ B∗. For each n ≥ 1 a circuit can be constructed whose
value is 1 on binary strings in L ∩ Bn and 0 otherwise. Similarly, given a family C of circuits
such that for each natural number n ≥ 1 the nth circuit, Cn, computes a Boolean function
on n inputs, the language L associated with this circuit family contains only those strings of
length n for which Cn has value 1. We say that L is recognized by C. At the risk of confusion,
we use the same name for a circuit family and the languages they define.

In Theorem 8.5.6 we show that NSPACE(r(n)) ⊆ TIME(klog n+r(n)). We now use
the ideas of that proof together with the parallel algorithm for transitive closure given in Sec-
tion 6.4 to show that languages in NSPACE(r(n)), r(n) ≥ log n, are recognized by a uniform
family of circuits in which the nth circuit has size O(klog n+r(n)) and depth O(r2(n)). When
r(n) = O(log n), the circuit family in question is contained in the class NC2 introduced in
the next section.

THEOREM 8.13.3 If language L ⊆ B∗ is in NSPACE(r(n)), r(n) ≥ log n, there exists a time-
r(n) uniform family of circuits recognizing L such that the nth circuit has size O(klog n+r(n))
and depth O(r2(n)) for some constant k.

Proof We assume without loss of generality that the NDTM accepting L has one accepting
configuration. We then construct the adjacency matrix for the configuration graph of M .
This matrix has a 1 entry in row i, column j if there is a transition from the ith to the
jth configuration. All other entries are 0. From the analysis of Corollary 8.5.1, this graph
has O(klog n+r(n)) configurations. The initial configuration is determined by the word w
written initially on the tape of the NDTM accepting L. If the transitive closure of this
matrix has a 1 in the row and column corresponding to the initial and final configurations,
respectively, then the word w is accepted.

From Theorem 6.4.1 the transitive closure of a Boolean p×p matrix A can be computed
by computing (I + A)q for q ≥ p − 1. This can be done by squaring A s times for
s ≥ log2 p. From this we conclude that the transitive closure can be computed by a circuit
of depth O(log2 m), where m is the number of configurations. Since m = O(klog n+r(n)),
we have the desired circuit size and depth bounds.

A program to compute the dth power of an p × p matrix A is shown in Fig. 8.20. This
program can be converted to one that writes the description of a circuit for this purpose,
and both the original and converted programs can be realized in space O(d log p). (See

trans(A, n, d, i, j)
if d = 0 then

return(ai,j)
else

return(
∑n

k=1 trans(A, n, d − 1, i, k) * trans(A, n, d − 1, k, j))

Figure 8.20 A recursive program to compute the dth power of an n × n matrix A.
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Problem 8.33.) Invoking this procedure to write a program for the above problem, we see
that an O(r2(n))-depth circuit recognizing L can be written by an O(r2(n))-time DTM.

8.14 The Parallel Random-Access Machine Model
The PRAM model, introduced in Section 7.9, is an abstraction of realistic parallel models that
is sufficiently rich to permit the study of parallel complexity classes. (See Fig. 7.21, repeated as
Fig. 8.21.) The PRAM consists of a set of RAM processors with a bounded number of memory
locations and a common memory. The words of the common memory are allowed to be of
unlimited size, but the instructions that the RAM processors can apply to them are restricted.
These processors can perform addition, subtraction, vector comparison operations, conditional
branching, and shifts by fixed amounts. We also allow load and store instructions for moving
words between registers, local memories, and the common memory. These instructions are
sufficiently rich to compute all computable functions.

In the next section we show that the CREW (concurrent read/exclusive write) PRAM that
runs in polynomial time and the log-space uniform circuits characterize the same complexity
classes. We then go on to explore the parallel complexity thesis, which states that sequential
space and parallel time are polynomially related.

8.14.1 Equivalence of the CREW PRAM and Circuits
Because a parallel machine with p processors can provide a speedup of at most a factor of p over
a comparable serial machine (see Theorem 7.4.1), problems that are computationally infeasi-
ble on serial machines are computationally infeasible on parallel machines with a reasonable
number of processors. For this reason the study of parallelism is usually limited to feasible
problems, that is, problems that can be solved in serial polynomial time (the class P). We limit
our attention to such problems here.

Common Memory

Pp

RAM

P2

RAM

P1

RAM

Figure 8.21 The PRAM consists of synchronous RAMs accessing a common memory.
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Connections between PRAMs and circuits can be derived that are similar to those stated
for Turing machines and circuits in Section 8.13.2. In this section we consider only log-space
uniform families of circuits.

Given a PRAM, we now construct a circuit simulating it. This construction is based
on that given in Section 3.4. With a suitable definition of log-space uniform family of
PRAMs the circuits described in the following lemma constitute a log-space uniform family
of circuits. (See Problem 8.35.) Also, this theorem can be extended to PRAMs that access
memory locations with addresses much larger than O(p(n)t(n)), perhaps through indirect
addressing. (See Problem 8.37.)

LEMMA 8.14.1 Consider a function on input words of total length n bits computed by a CREW
PRAM P in time t(n) with a polynomial number of processors p(n) in which the largest common
memory address is O( p(n)t(n)). This function can be computed by a circuit of size O( p2(n)t(n)
+ p(n)t2(n)) and depth O (log( p(n)t(n))).

Proof Since P executes at most t(n) steps, by a simple extension to Problem 8.4 (only one
RAM CPU at a time writes a word), we know that after t(n) steps each word in the common
memory of the PRAM has length at most b = t(n) + n + K for some constant K ≥ 0,
because the PRAM can only compare or add numbers or shift them left by one position on
each time step. This follows because each RAM CPU uses integers of fixed length and the
length of the longest word in the common memory is initially n.

We exhibit a circuit for the computation by P by modifying and extending the circuit
sketched in Section 3.4 to simulate one RAM CPU. This circuit uses the next-state/output
circuit for the RAM CPU together with the next-state/output circuit for the random-access
memory of Fig. 3.21 (repeated in Fig. 8.22). The circuit of Fig. 8.22(a) either writes a new
value dj for w∗

i,j , the jth component of the ith memory word of the random-access memory,
or it writes the old value wi,j . The circuit simulating the common memory of the PRAM
is obtained by replacing the three gates at the output of the circuit in Fig. 8.22(a) with a
subcircuit that assigns to w∗

i,j the value of wi,j if ci = 0 for each RAM CPU and the OR of
the values of dj supplied by each RAM CPU if ci = 1 for some CPU. Here we count on the
fact that at most one CPU addresses a given location for writing. Thus, if a CPU writes to
a location, all other CPUs cannot do so. Concurrent reading is simulated by allowing every
component of every memory cell to be used as input by every CPU.

Since the longest word that can be constructed by the CREW PRAM has length b =
t(n)+n+K, it follows from Lemma 3.5.1 that the next-state/output circuit for the random-
access memory designed for one CPU has size O(p(n)t2(n)) and depth O (log(p(n)t(n))).
The modifications described in the previous paragraph add size O(p2(n)t(n)) (each of the
p(n)t(n) memory words has O(p(n)) new gates) and depth O(log p(n)) (each OR tree
has p(n) inputs) to this circuit. As shown at the end of Section 3.10, the size and depth
of a circuit for the next-state/output circuit of the CPU are O(t(n) + log(p(n)t(n))) and
O(log t(n) + log log(p(n)t(n))), respectively. Since these sizes and depths add to those
for the common memory, the total size and depth for the next-state/output circuit for the
PRAM are O(p2(n)t(n) + p(n)t2(n)) and O (log(p(n)t(n))), respectively.

We now show that the function computed by a log-space uniform circuit family can be
computed in poly-logarithmic time on a PRAM.
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......y0 ∧ w0,j yi ∧ wi,j

uj

ym−1 ∧ wm−1,j

y2 ∧ w2,j
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Figure 8.22 A circuit for the next-state and output function of the random-access memory.
The circuit in (a) computes the next values for components of memory words, whereas that in (b)
computes components of the output word. This circuit is modified to generate a circuit for the
PRAM.

LEMMA 8.14.2 Let C = (C1, C2, . . .} be a log-space uniform family of circuits. There exists a
CREW PRAM that computes in poly-logarithmic time and a polynomial number of processors the
function f : B∗ "→ B∗ computed by C.

Proof The CREW PRAM is given a string w on which to compute the function f . First
it computes the length n of w. Second it invokes the CREW PRAM described below to
simulate with a polynomial number of processors in poly-logarithmic time the log-space
DTM M that writes a description of the nth circuit, C(M , n). Finally we show that the
value of C(M , n) can be evaluated from this description by a CREW PRAM in O(log2 n)
steps with polynomially many processors.

Let M be a three-tape DTM that realizes a log-space transformation. This DTM has
a read-only input tape, a work tape, and a write-only output tape. Given a string w on its
input tape, it provides on its output tape the result of the transformation. Since M uses
O(log n) cells on its work tape on inputs of length n, it can be modeled by a finite-state
machine with 2O(log n) states. The circuit C(M , n) described in Theorem 3.2.2 for the
simulation of the FSM M is constructed to simulate M on inputs of length n. We show
that C(M , n) has size and depth that are polynomial and poly-logarithmic in n, respectively.
We then demonstrate that a CREW PRAM can simulate C(M , n) (and write its output into
its common memory) in O(log2 n) steps with a polynomial number of processors.
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From Theorem 8.5.8 we know that the log-space DTM M generating C(M , n) does
not execute more than p(n) steps, p(n) a polynomial in n. Since p(n) is assumed proper,
we can assume without loss of generality that M executes p(n) steps on all inputs of length
n. Thus, M has exactly |Q| = O(p(n)) configurations.

The input string w is placed in the first n locations of the otherwise blank common
memory. To determine the length of the input, for each i the ith CREW PRAM processor
examines the words in locations i and i + 1. If location i + 1 is blank but location i is not,
i = n. The nth processor then computes p(n) in O(log2 n) serial steps (see Problem 8.2)
and places it in common memory.

The circuit C(M , n) is constructed from representations of next-state mappings, one
mapping for every state transition. Since there are no external inputs to M (all inputs are
recorded on the input tape before the computation begins), all next-state mappings are the
same. As shown in Section 3.2, let this one mapping be defined by a Boolean |Q| × |Q|
matrix M∆ whose rows and columns are indexed by configurations of M . A configuration
of M is a tuple (q, h1, h2, h3, x) in which q is the current state, h1, h2, and h3 are the
positions of the heads on the input, output, and work tapes, respectively, and x is the cur-
rent contents of the work tape. Since M computes a log-space transformation, it executes a
polynomial number of steps. Thus, each configuration has length O(log n). Consequently,
a single CREW PRAM can determine in O(log n) time whether an entry in row r and
column c, where r and c are associated with configurations, has value 0 or 1. For concrete-
ness, assign PRAM processor i to row r and column c of M∆, where r = +i/p(n), and
c = i − r × p(n), quantities that can be computed in O(log2 n) steps.

The circuit C(M , n) simulating M is obtained via a prefix computation on p(n) copies
of the matrix M∆ using matrix multiplication as the associative operator. (See Section 3.2.)

Once C(M , n) has been written into the common memory, it can be evaluated by
assigning one processor per gate and then computing its value as many times as the depth of
C(M , n). This involves a four-phase operation in which the jth processor reads each of the
at most two arguments of the jth gate in the first two phases, computes its value in the third,
and then writes it to common memory in the fourth. This process is repeated as many times
as the depth of the circuit C(M , n), thereby insuring that correct values for gates propagate
throughout the circuit. Again concurrent reads and exclusive writes suffice.

These two results (and Problem 8.37) imply the result stated below, namely, that the bi-
nary functions computed by circuits with polynomial size and poly-logarithmic depth are the
same as those computed by the CREW PRAM with polynomially many processors and poly-
logarithmic time.

THEOREM 8.14.1 The functions f : B∗ "→ B∗ computed by circuits of polynomial-size and poly-
logarithmic depth are the same as those computed by the CREW PRAM with a polynomial number
of processors and poly-logarithmic time.

8.14.2 The Parallel Computation Thesis
A deep connection exists between serial space and parallel time. The parallel computation
thesis states that sequential space and parallel time are polynomially related; that is, if there
exists a sequential algorithm that uses space S, then there exists a parallel algorithm using time
p(S) for some polynomial p and vice versa. There is strong evidence that this hypothesis holds.
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In this section we set the stage for discussing the parallel computation thesis in a limited
way by showing that every log-space reduction (on a Turing machine) can be realized by a
CREW PRAM in time O

(
log2 n

)
with polynomially many processors. This implies that if a

P-complete problem can be solved on a PRAM with polynomially many processors in poly-
logarithmic time, then so can every problem in P, an unlikely prospect.

LEMMA 8.14.3 Log-space transformations can be realized by CREW PRAMs with polynomially
many processors in time O(log2 n).

Proof We use the CREW PRAM described in the proof of Lemma 8.14.2. The processors
in this PRAM are then assigned to perform the matrix operations in the order required
for a parallel prefix computation. (See Section 2.6.) If we assign |Q(n)|2 processors per
matrix multiplication operation, each operation can be done in O(log |Q(n)|2) = O(log n)
steps. Since the prefix computation has depth O(log n), the PRAM can perform the prefix
computation in time O(log2 n). The number of processors used is p(n)·O(|Q(n)|2), which
is a polynomial in n. Concurrent reads and exclusive writes suffice for these operations.

Since a log-space transformation can be realized in poly-logarithmic time with polynomi-
ally many processors on a CREW PRAM, if a CREW PRAM solves a P-complete problem in
poly-logarithmic time, we can compose such machines to form a CREW PRAM with poly-
logarithmic time and polynomially many processors to solve an arbitrary problem in P.

THEOREM 8.14.2 If a P-complete problem can be solved in poly-logarithmic time with polyno-
mially many processors on a CREW PRAM, then so can all problems in P and all problems in P
are fully parallelizable.

8.15 Circuit Complexity Classes
In this section we introduce several important circuit complexity classes including NC, the
languages recognized by uniform families of circuits whose size and depth are polynomial and
poly-logarithmic in n, respectively, and P/poly, the largest set of languages L ⊂ B∗ with the
property that L is recognized by a (non-uniform) circuit family of polynomial size. We also
derive relationships among these classes and previously defined classes.

8.15.1 Efficiently Parallelizable Languages

DEFINITION 8.15.1 The class NCk contains those languages L recognized by a uniform family of
Boolean circuits of polynomial size and depth O(logk n) in n, the length of an input. The class
NC is the union of the classes NCk, k ≥ 1; that is,

NC =
⋃

k≥1

NCk

In Section 8.14 we explored the connection between circuit size and depth and PRAM
time and number of processors and concluded that circuits having polynomial size and poly-
logarithmic depth compute the same languages as do PRAMs with a polynomial number of
processors and poly-logarithmic parallel time.



c©John E Savage 8.15 Circuit Complexity Classes 381

The class NC is considered to be the largest feasibly parallelizable class of languages. By fea-
sible we mean that the number of gates (equivalently processors) is no more than polynomial
in the length n of the input and by parallelizable we mean that circuit depth (equivalently
computation time) must be no more than poly-logarithmic in n. Feasibly parallelizable lan-
guages meet both requirements.

The prefix circuits introduced in Section 2.6 belong to NC1, as do circuits constructed
with prefix operations, such as binary addition and subtraction (see Section 2.7) and the cir-
cuits for solutions of linear recurrences (see Problem 2.24). (Strictly speaking, these functions
are not predicates and do not define languages. However, comparisons between their values
and a threshold converts them to predicates. In this section we liberally mix functions and
predicates.) The class NC1 also contains functions associated with integer multiplication and
division.

The fast Fourier transform (see Section 6.7.3) and merging networks (see Section 6.8) can
both be realized by algebraic and combinatorial circuits of depth O(log n), where n is the
number of circuit inputs. If the additions and multiplications of the FFT are done over a ring
of integers modulo m for some m, the FFT can be realized by a circuit of depth O(log2 n). If
the items to be merged are represented in binary, a comparison operator can be realized with
depth O(log n) and merging can also be done with a circuit of depth O(log2 n). Thus, both
problems are in NC2.

When matrices are defined over a field of characteristic zero, the inverse of invertible ma-
trices (see Section 6.5.5) can be computed by an algebraic circuit of depth O(log2 n). If the
matrix entries when represented as binary numbers have size n, the ring operations may be
realized in terms of binary addition and multiplication, and matrix inversion is in NC3.

Also, it follows from Theorem 8.13.3 that the nth circuit in the log-space uniform families
of circuits has polynomial size and depth O(log2 n); that is, it is contained in NC2. Also
contained in this set is the transitive closure of a Boolean matrix (see Section 6.4). Since the
circuits constructed in Chapter 3 to simulate finite-state machines as well as polynomial-time
Turing machines are log-space uniform (see Theorem 8.13.1), each of these circuit families is
in NC2.

We now relate these complexity classes to one another and to P.

THEOREM 8.15.1 For k ≥ 2, NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NCk ⊆ NC ⊆ P.

Proof The containment L ⊆ NL is obvious. The containment NL ⊆ NC2 is a restriction
of the result of Theorem 8.13.3 to r(n) = O(log n). The containments NC2 ⊆ NCk ⊆
NC follow from the definitions. The last containment, NC ⊆ P, is a consequence of the
fact that the circuit on n inputs in a log-space uniform family of circuits, call it Cn, can
be generated in polynomial time by a Turing machine that can then evaluate Cn in a time
quadratic in its length, that is, in polynomial time. (Theorems 8.5.8 and 8.13.2 apply.)

The first containment, namely NC1 ⊆ L, is slightly more difficult to establish. Given a
language L ∈ NC1, consider the problem of recognizing whether or not a string w is in L.
This recognition task is done in log-space by invoking two log-space transformations, as is
now explained.

The first log-space transformation generates the nth circuit, Cn, in the family recogniz-
ing L. Cn has value 1 if w is in L and 0 otherwise. By definition, Cn has size polynomial
in n. Also, each circuit is described by a straight-line program, as explained in Section 2.2.
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The second log-space transformation evaluates the circuit with temporary work space
proportional to the maximal length of such strings. If the strings identifying gates have
larger length, their transformation would use more space. (Note that it is easy to identify
gates with an O(log2 n)-length string(s) by concatenating the number of each gate on the
path to it, including itself.) For this reason we give an efficient encoding of gate locations.

The gates of circuits in NC1 generally have fan-out exceeding 1. That is, they have more
than one parent gate in the circuit. We describe how to identify gates with strings that may
associate multiple strings with a gate. We walk the graph, which is the circuit, starting from
the output vertex and moving toward input vertices. The output gate is identified with the
empty string string ε. If we reach a gate g via a parent whose string is p, g is identified by
p0 or p1. If the parent has only one descendant, as would be the case for NOT gates and
inputs, we represent g by p0. If it has two descendants, as would be the case for AND and
OR, and g has the smaller gate number, its string is p0; otherwise it is p1.

The algorithm to produce each of these binary strings can be executed in logarithmic
space because one need only walk each path in the circuit from the output to inputs. The
tuple defining each gate contains the gate numbers of its predecessors, O(log n)-length
numbers, and the algorithm need only carry one such number at a time in its working mem-
ory to find the location of a predecessor gate in the input string containing the description
of the circuit.

The second log-space transformation evaluates the circuit using the binary strings de-
scribing the circuit. It visits the input vertex with the lexicographically smallest string and
determines its value. It then evaluates the gate whose string is that of the input vertex minus
the last bit. Even though it may have to revisit all gates on the path to this vertex to do this,
O(log n) space is used. If this gate is either a) AND and the input has value 0, b) OR and
the input has value 1, or c) NOT, the value of the gate is decided. If the gate has more than
one input and its value is not decided, the other input to it is evaluated (the one with suffix
1). Because the second input to the gate is evaluated only if needed, its value determines
the value of the gate. This process is repeated at each gate in the circuit until the output
gate is reached and its value computed. Since this procedure keeps only one path of length
O(log n) active at a time, the algorithm uses space O(log n).

An important open question is whether the complexity hierarchy of this theorem collapses
and, if so, where. For example, is it true that a problem in P is also in NC? If so, all serial
polynomial-time problems are parallelizable with a number of processing elements polynomial
in the length of the input and poly-logarithmic time, an unlikely prospect.

8.15.2 Circuits of Polynomial Size
We now examine the class of languages P/poly and show that they are exactly the languages
recognized by Boolean circuits of polynomial size. To set the stage we introduce advice and
pairing functions.

DEFINITION 8.15.2 An advice function a : "→ B∗ maps natural numbers to binary strings.
A polynomial advice function is an advice function for which |a(n)| ≤ p(n) for p(n) a
polynomial function in n.

DEFINITION 8.15.3 A pairing function <, >: B∗ × B∗ "→ B∗ encodes pairs of binary strings
x and y with two end markers and a separator (a comma) into the binary string < x, y >.
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Pairing functions can be very easy to describe and compute. For example, < x, y > can
be implemented by representing 0 by 01, 1 by 10, both < and > by 11, and , (comma) by 00.
Thus, < 0010, 110 > is encoded as 11010110010010100111. It is clearly trivial to identify,
extract, and decode each component of the pair. We are now prepared to define P/poly.

DEFINITION 8.15.4 Let a : "→ B∗ be a polynomial advice function. P/poly is the set of
languages L = {w | < w, a(|w|) > ∈ A} for which there is a language A in P.

The advice a(|w|) given on a string w in a language L ∈ P/poly is the same for all
strings of the same length. Furthermore, < w, a(|w|) > must be easy to recognize, namely,
recognizable in polynomial time.

The subset of the languages in P/poly for which the advice function is the empty string is
exactly the languages in P, that is, P ⊆ P/poly.

The following result is the principal result of this section. It gives two different interpreta-
tions of the advice given on strings.

THEOREM 8.15.2 A language L is recognizable by a family of circuits of polynomial size if and
only if L ∈ P/poly.

Proof Let L be recognizable by a family C of circuits of polynomial size. We show that it is
in P/poly.

Let Cn be an encoding of the circuit Cn in C that recognizes strings in L ∩ Bn. Let the
advice function a(n) = Cn and let w ∈ B∗ have length n. Then, w ∈ Bn if and only if
the value of Cn on w is 1. Since w has length polynomial in n, w ∈ Bn if and only if the
pairing function < w, a(|w|) > is an instance of CIRCUIT SAT, which has been shown to
be in P. (See Theorem 8.13.2.)

On the other hand, suppose that L ∈ P/poly. We show that L is recognizable by circuits
of polynomial size. By definition there is an advice function a : "→ B∗ and a language
A ∈ P for L such that for all w ∈ L, < w, a(|w|) > ∈ A. Since A ∈ P, there is a
polynomial-time DTM that accepts < w, a(|w|) >. By Theorem 8.13.1 there is a circuit
of polynomial size that recognizes < w, a(|w|) >. The string a(|w|) is constant for strings
w of length n. Thus, the circuit for A∩Bn to which is supplied the constant string a(|w|)
is a circuit of length polynomial in n that accepts strings w in L.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Problems
MATHEMATICAL PRELIMINARIES

8.1 Show that if strings over an alphabet A with at least two letters are encoded over a
one-letter alphabet (a unary encoding), then strings of length n over A require strings
of length exponential in n in the unary encoding.

8.2 Show that the polynomial function p(n) = K1nk can be computed in O(log2 n) serial
steps from n and for constants K1 ≥ 1 and k ≥ 1 on a RAM when additions require
one unit of time.
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SERIAL COMPUTATIONAL MODELS

8.3 Given an instance of satisfiability, namely, a set of clauses over a set of literals and values
for the variables, show that the clauses can be evaluated in time quadratic in the length
of the instance.

8.4 Consider the RAM of Section 8.4.1. Let l (I) be the length, measured in bits, of the
contents I of the RAMs input registers. Similarly, let l (v) be the maximal length of any
integer addressed by an instruction in the RAMs program. Show that after k steps the
contents of any RAM memory location is at most k + l(I) + l(v).

Given an example of a computation that produces a word of length k.

Hint: Consider which instructions have the effect of increasing the length of an integer
used or produced by the RAM program.

8.5 Consider the RAM of Section 8.4.1. Assume the RAM executes T steps. Describe a
Turing-machine simulation of this RAM that uses space proportional to T 2 measured
in bits.

Hint: Represent each RAM memory location visited during a computation by an
(address, contents) pair. When a RAM location is updated, fill the cells on the
second tape containing the old (address, contents) pair with a special “blank” char-
acter and add the new (address, contents) pair to the end of the list of such pairs.
Use the results of Problem 8.4 to bound the length of individual words.

8.6 Consider the RAM of Section 8.4.1. Using the result of Problem 8.5, describe a multi-
tape Turing machine that simulates in O(T 3) steps a T -step computation by the RAM.

Hint: Let your machine have seven tapes: one to hold the input, a second to hold
the contents of RAM memory recorded as (address, contents) pairs separated and
terminated by appropriate markers, a third to hold the current value of the program
counter, a fourth to hold the memory address being sought, and three tapes for operands
and results. On the input tape place the program to be executed and the input on which
it is to be executed. Handle the second tape as suggested in Problem 8.5. When per-
forming an operation that has two operands, place them on the fifth and sixth tapes
and the result on the seventh tape.

8.7 Justify using the number of tape cells as a measure of space for the Turing machine
when the more concrete measure of bits is used for the space measure for the RAM.

CLASSIFICATION OF DECISION PROBLEMS

8.8 Given a Turing machine, deterministic or not, show that there exists another Turing
machine with a larger tape alphabet that performs the same computation but in a num-
ber of steps and number of tape cells that are smaller by constant factors.

8.9 Show that strings in TRAVELING SALESPERSON can be accepted by a deterministic
Turing machine in an exponential number of steps.

COMPLEMENTS OF COMPLEXITY CLASSES

8.10 Show that VALIDITY is log-space complete for coNP.

8.11 Prove that the complements of NP-complete problems are coNP-complete.
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8.12 Show that the complexity class P is contained in the intersection of NP and coNP.

8.13 Demonstrate that coNP ⊆ PSPACE.

8.14 Prove that if a coNP-complete problem is in NP, then NP = coNP.

REDUCTIONS

8.15 If P1 and P2 are decision problems, a Turing reduction from P1 to P2 is any OTM
that solves P1 given an oracle for P2. Show that the reductions of Section 2.4 are
Turing reductions.

8.16 Prove that the reduction given in Section 10.9.1 of a pebble game to a branching com-
putation is a Turing reduction. (See Problem 8.15.)

8.17 Show that if a problem P1 can be Turing-reduced to problem P2 by a polynomial-time
OTM and P2 is in P, then P1 is also in P.

Hint: Since each invocation of the oracle can be done deterministically in polynomial
time in the length of the string written on the oracle tape, show that it can be done in
time polynomial in the length of the input to the OTM.

8.18 a) Show that every fixed power of an integer written as a binary k-tuple can be com-
puted by a DTM in space O(k).

b) Show that every fixed polynomial in an integer written as a binary k-tuple can be
computed by a DTM in space O(k).

Hint: Show that carry-save addition can be used to multiply two k-bit integers with
work space O(k).

HARD AND COMPLETE PROBLEMS

8.19 The class of polynomial-time Turing reductions are Turing reductions in which the
OTM runs in time polynomial in the length of its input. Show that the class of Turing
reductions is transitive.

P-COMPLETE PROBLEMS

8.20 Show that numbers can be assigned to gates in an instance of MONOTONE CIRCUIT

VALUE that corresponds to an instance of CIRCUIT VALUE in Theorem 8.9.1 so that
the reduction from it to MONOTONE CIRCUIT VALUE can be done in logarithmic
space.

8.21 Prove that LINEAR PROGRAMMING described below is P-complete.

LINEAR PROGRAMMING

Instance: Integer-valued m × n matrix A and column m-vectors b and c.
Answer: “Yes” if there is a rational column n-vector x > 0 such that Ax < b and x
maximizes cT x.

NP-COMPLETE PROBLEMS

8.22 A Horn clause has at most one positive literal (an instance of xi). Every other literal
in a Horn clause is a negative literal (an instance of xi). HORN SATISFIABILITY is an
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instance of SATISFIABILITY in which each clause is a Horn clause. Show that HORN

SATISFIABILITY is in P.

Hint: If all literals in a clause are negative, the clause is satisfied only if some associated
variables have value 0. If a clause has one positive literal, say y, and negative literals, say
x1, x2, . . . , xk, then the clause is satisfied if and only if the implication x1 ∧x2 ∧ · · ·∧
xk ⇒ y is true. Thus, y has value 1 when each of these variables has value 1. Let T
be a set variables that must have value 1. Let T contain initially all positive literals that
appear alone in a clause. Cycle through all implications and for each implication all
of whose left-hand side variables appear in T but whose right-hand side variable does
not, add this variable to T . Since T grows until all left-hand sides are satisfied, this
procedure terminates. Show that all satisfying assignments contain T .

8.23 Describe a polynomial-time algorithm to determine whether an instance of CIRCUIT

SAT is a “yes” instance when the circuit in question consists of a layer of AND gates
followed by a layer of OR gates. Inputs are connected to AND gates and the output gate
is an OR gate.

8.24 Prove that the CLIQUE problem defined below is NP-complete.

CLIQUE

Instance: The description of an undirected graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices of G such that all vertices are adjacent.

8.25 Prove that the HALF CLIQUE problem defined below is NP-complete.

HALF CLIQUE

Instance: The description of an undirected graph G = (V , E) in which |V | is even and
an integer k.
Answer: “Yes” if G contains a clique on |V |/2 vertices or has more than k edges.

Hint: Try reducing an instance of CLIQUE on a graph with m vertices and a clique of
size k to this problem by expanding the number of vertices and edges to create a graph
that has |V | ≥ m vertices and a clique of size |V |/2. Show that a test for the condition
that G contains more than k edges can be done very efficiently by counting the number
of bits among the variables describing edges.

8.26 Show that the NODE COVER problem defined below is NP-complete.

NODE COVER

Instance: The description of an indirected graph G = (V , E) and an integer k.
Answer: “Yes” if there is a set of k vertices such that every edge contains at least one of
these vertices.

8.27 Prove that the HAMILTONIAN PATH decision problem defined below is NP-complete.

HAMILTONIAN PATH

Instance: The description of an undirected graph G.
Answer: “Yes” if there is a path visiting each node once.

Hint: 3-SAT can be reduced to HAMILTONIAN PATH, but the construction is chal-
lenging. First, add literals to clauses in an instance of 3-SAT so that each clause has
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Figure 8.23 Gadgets used to reduce 3-SAT to HAMILTONIAN PATH.

three literals. Second, construct and interconnect three types of subgraphs (gadgets).
Figures 8.23(a) and (b) show the first and second of theses gadgets, G1 and G2.

There is one first gadget for each variable xi, 1 ≤ i ≤ n, denoted G1,i. The left path
between the two middle vertices in G1,i is associated with the value xi = 1 and the
right path is associated with the complementary value, xi = 0. Vertex f of G1,i is
identified with vertex e of G1,i+1 for 1 ≤ i ≤ n− 1, vertex e of G1,1 is connected only
to a vertex in G1,1, and vertex f of G1,n is connected to the clique described below.

There is one second gadget for each literal in each clause. Thus, if xi (xi) is a literal in
clause cj , then we create a gadget G2,j,i,1 (G2,j,i,0).

Since a HAMILTONIAN PATH touches every vertex, a path through G2,j,i,v for v ∈
{0, 1} passes either from a to c or from b to d.

For each 1 ≤ i ≤ n the two parallel edges of G1,i are broken open and two vertices
appear in each of them. For each instance of the literal xi (xi), connect the vertices a
and c of G2,j,i,1 (G2,j,i,0) to the pair of vertices on the left (right) that are created in
G1,i. Connect the b vertex of one literal in clause cj to the d vertex of another one, as
suggested in Fig. 8.23(c).

The third gadget has vertices g and h and a connecting edge. One of these two vertices,
h, is connected in a clique with the b and d vertices of the gadgets G2,j,i,v and the f
vertex of G1,n.

This graph has a Hamiltonian path between g and the e vertex of G1,1 if and only if
the instance of 3-SAT is a “yes” instance.

8.28 Show that the TRAVELING SALESPERSON decision problem defined below is NP-
complete.

TRAVELING SALESPERSON

Instance: An integer k and a set of n(n − 1)/2 distances {d1,2, d1,3, . . . , d1,n, d2,3, . . . ,
d2,n, . . . , dn−1,n} between n cities.
Answer: “Yes” if there is a tour (an ordering) {i1, i2, . . . , in} of the cities such that the
length l = di1,i2 + di2,i3 + · · · + din ,i1 of the tour satisfies l ≤ k.

Hint: Try reducing HAMILTONIAN PATH to TRAVELING SALESPERSON.
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8.29 Give a proof that the PARTITION problem defined below is NP-complete.

PARTITION

Instance: A set Q = {a1, a2, . . . , an} of positive integers.
Answer: “Yes” if there is a subset of Q that adds to 1

2

∑
1≤i≤n ai.

PSPACE-COMPLETE PROBLEMS

8.30 Show that the procedure tree eval described in the proof of Theorem 8.12.1 can
be modified slightly to apply to the evaluation of the trees generated in the proof of
Theorem 8.12.3.

Hint: A vertex of in-degree k can be replaced by a binary tree of k leaves and depth
log2 k.

THE CIRCUIT MODEL OF COMPUTATION

8.31 Prove that the class of circuits described in Section 3.1 that simulate a finite-state ma-
chine are uniform.

8.32 Generalize Theorems 8.13.1 and 8.13.2 to uniform circuit families and Turing ma-
chines that use more than logarithmic space and polynomial time, respectively.

8.33 Write a O(log2 n)-space program based on the one in Fig. 8.20 to describe a circuit for
the transitive closure of an n × n matrix based on matrix squaring.

THE PARALLEL RANDOM-ACCESS MACHINE MODEL

8.34 Complete the proof of Lemma 8.14.2 by making specific assignments of data to mem-
ory locations. Also, provide formulas for the assignment of processors to tasks.

8.35 Give a definition of a log-space uniform family of PRAMs for which Lemma 8.14.1
can be extended to show that the function f : B∗ "→ B∗ computed by a log-space fam-
ily of PRAMs can also be computed by a log-space uniform family of circuits satisfying
the conditions of Lemma 8.14.1.

8.36 Exhibit a non-uniform family of PRAMs that can solve problems that are not recur-
sively enumerable.

8.37 Lemma 8.14.1 is stated for PRAMs in which the CPU does not access a common mem-
ory address larger than O(p(n)t(n)). In particular, this model does not permit indirect
addressing. Show that this theorem can be extended to RAM CPUs that do allow
indirect addressing by using the representation for memory accesses in Problem 8.6.

Chapter Notes
The classification of languages by the resources needed for their recognition is a very large
subject capable of book-length study. The reader interested in going beyond the introduc-
tion given here is advised to consult one of the readily available references. The Handbook of
Theoretical Computer Science contains three survey articles on this subject by van Embde Boas
[349], Johnson [150], and Karp and Ramachandran [160]
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The first examines simulation of one computational model by another for a large range of
models. The second provides a large catalog of complexity classes and relationships between
them. The third examines parallel algorithms and complexity. Other sources for more infor-
mation on this topic are the books by Hopcroft and Ullman [140], Lewis and Papadimitriou
[199], Balcázar, Dı́az, and Gabarrò on structural complexity [27], Garey and Johnson [108]
on the theory of NP-completeness, Greenlaw, Hoover, and Ruzzo [119] on P-completeness,
and Papadimitriou [234] on computational complexity.

The Turing machine was defined by Alan Turing in 1936 [337], as was the oracle Turing
machine. Random-access machines were introduced by Shepherdson and Sturgis [307] and
the performance of RAMs was analyzed by Cook and Reckhow [77].

Hartmanis, Lewis, and Stearns [126,127] gave the study of time and space complexity
classes its impetus. Their papers contain many of the basic theorems on complexity classes,
including the space and time hierarchy theorems stated in Section 8.5.1. The gap theorem
was obtained by Trakhtenbrot [333] and rediscovered by Borodin [51]. Blum [46] developed
machine-independent complexity measures and established a speedup theorem showing that
for some languages there is no single fastest recognition algorithm [47].

Many individuals identified and recognized the importance of the classes P and NP. Cook
[74] formalized NP, emphasized the importance of polynomial-time reducibility, and exhib-
ited the first NP-complete problem, SATISFIABILITY. Karp [158] then demonstrated that
a number of other combinatorial problems, including TRAVELING SALESPERSON, are NP-
complete. Cook used Turing reductions in his classification whereas Karp used polynomial-
time transformations. Independently and almost simultaneously Levin [198] (see also [334])
was led to concepts similar to the above.

The relationship between nondeterministic and deterministic space (Theorem 8.5.5 and
Corollary 8.5.1) was established by Savitch [296]. The proof that nondeterministic space
classes are closed under complementation (Theorem 8.6.2 and Corollary 8.6.2) is indepen-
dently due to Szelepscényi [321] and Immerman [144].

Theorem 8.6.4, showing that PRIMALITY is in NP ∩ coNP, is due to Pratt [256].
Cook [75] defined the concept of a P-complete problem and exhibited the first such prob-

lem. He was followed quickly by Jones and Laaser [152] and Galil [107]. Ladner [184] showed
that circuits simulating Turing machines (see [285]) could be constructed in logarithmic space,
thereby establishing that CIRCUIT VALUE is P-complete. Goldschlager [116] demonstrated
that MONOTONE CIRCUIT VALUE is P-complete. Valiant [344] and Cook established that
LINEAR INEQUALITIES is P-hard, and Khachian [164] showed that this problem is in P. The
proof that DTM ACCEPTANCE is P-complete is due to Johnson [150].

Cook [74] gave the first proof that SATISFIABILITY is NP-complete and also gave the
reduction to 3-SAT. Independently, Levin [198] (see also [334]) was led to similar concepts
for combinatorial problems. Schäfer [298] showed that NAESAT is NP-complete. Karp [158]
established that 0-1 INTEGER PROGRAMMING, 3-COLORING, EXACT COVER, SUBSET

SUM, TASK SEQUENCING, and INDEPENDENT SET are NP-complete.
The proof that 2-SAT is in NL (Theorem 8.11.1) is found in Papadimitriou [234].
Karp [158] exhibited a PSPACE-complete problem, Meyer and Stockmeyer [315] demon-

strated that QUANTIFIED SATISFIABILITY is PSPACE-complete and Schäfer established that
GENERALIZED GEOGRAPHY is PSPACE-complete [298].

The notion of a uniform circuit was introduced by Borodin [52] and has been examined by
many others. (See [119].) Borodin [52] established the connection between nondeterministic
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space and circuit depth stated in Theorem 8.13.3. Stockmeyer and Vishkin [316] show how
to simulate efficiently the PRAM with circuits and vice versa. (See also [160].) The class NC
was defined by Cook [76]. Theorem 8.15.2 is due to Pippenger [248]. The class P/poly and
Theorem 8.15.2 are due to Karp and Lipton [159].

A large variety of parallel computational models have been developed. (See van Embde
Boas [349] and Greenlaw, Hoover, and Ruzzo [119].) The PRAM was introduced by Fortune
and Wyllie [102] and Goldschlager [117,118].

Several problems on the efficient simulation of RAMs are from Papadimitriou [234].


