
C H A P T E R

Computability

The Turing machine (TM) is believed to be the most general computational model that can
be devised (the Church-Turing thesis). Despite many attempts, no computational model has
yet been introduced that can perform computations impossible on a Turing machine. This
is not a statement about efficiency; other machines, notably the RAM of Section 3.4, can do
the same computations either more quickly or with less memory. Instead, it is a statement
about the feasibility of computational tasks. If a task can be done on a Turing machine, it is
considered feasible; if it cannot, it is considered infeasible. Thus, the TM is a litmus test for
computational feasibility. As we show later, however, there are some well-defined tasks that
cannot be done on a TM.

The chapter opens with a formal definition of the standard Turing machine and describes
how the Turing machine can be used to compute functions and accept languages. We then
examine multi-tape and nondeterministic TMs and show their equivalence to the standard
model. The nondeterministic TM plays an important role in Chapter 8 in the classification of
languages by their complexity. The equivalence of phrase-structure languages and the languages
accepted by TMs is then established. The universal Turing machine is defined and used to
explore limits on language acceptance by Turing machines. We show that some languages
cannot be accepted by any Turing machine, while others can be accepted but not by Turing
machines that halt on all inputs (the languages are unsolvable). This sets the stage for a proof
that some problems, such as the Halting Problem, are unsolvable; that is, there is no Turing
machine halting on all inputs that can decide for an arbitrary Turing machine M and input
string w whether or not M will halt on w. We close by defining the partial recursive functions,
the most general functions computable by Turing machines.

209

210 Chapter 5 Computability Models of Computation

5.1 The Standard Turing Machine Model
The standard Turing machine consists of a control unit, which is a finite-state machine, and
a (single-ended) infinite-capacity tape unit. (See Fig. 5.1.) Each cell of the tape unit initially
contains the blank symbol β. A string of symbols from the tape alphabet Γ is written left-
adjusted on the tape and the tape head is placed over the first cell. The control unit then reads
the symbol under the head and makes a state transition the result of which is either to write
a new symbol under the tape head or to move the head left (if possible) or right. (The TM
described in Section 3.7 is slightly different; it always replaces the cell contents and always
issues a move command, even if the effect in both cases is null. The equivalence between the
standard TM and that described in Section 3.7 is easily established. See Problem 5.1.) A move
left from the first cell leads to abnormal termination, a problem that can be avoided by having
the Turing machine write a special end-of-tape marker in the first tape cell. This marker is a
tape symbol not used elsewhere.

DEFINITION 5.1.1 A standard Turing machine (TM) is a six-tuple M = (Γ, β, Q, δ, s, h)
where Γ is the tape alphabet not containing the blank symbol β, Q is the finite set of states,
δ : Q × (Γ ∪ {β}) #→ (Q ∪ {h}) × (Γ ∪ {β} ∪ {L, R}) is the next-state function, s is the
initial state, and h %∈ Q is the accepting halt state. A TM cannot exit from h. If M is in state
q with letter a under the tape head and δ(q, a) = (q′, C), its control unit enters state q′ and writes
a′ if C = a′ ∈ Γ ∪ {β} or moves the head left (if possible) or right if C is L or R, respectively.

The TM M accepts the input string w ∈ Γ∗ (it contains no blanks) if when started in state
s with w placed left-adjusted on its otherwise blank tape and the tape head at the leftmost tape cell,
the last state entered by M is h. M accepts the language L(M) consisting of all strings accepted
by M . Languages accepted by Turing machines are called recursively enumerable. A language
L is decidable or recursive if there exists a TM M that halts on every input string, whether in L
or not, and accepts exactly the strings in L.

A function f : Γ∗ #→ Γ∗ ∪ {⊥}, where ⊥ is a symbol that is not in Γ, is partial if for some
w ∈ Γ∗, f(w) =⊥ (f is not defined on w). Otherwise, f is total.

A TM M computes a function f : Γ∗ #→ Γ∗ ∪ ⊥ for those w such that f(w) is defined if
when started in state s with w placed left-adjusted on its otherwise blank tape and the tape head
at the leftmost tape cell, M enters the accepting halt state h with f(w) written left-adjusted on its
otherwise blank tape. If a TM halts on all inputs, it implements an algorithm. A task defined by
a total function f is solvable if f has an algorithm and unsolvable otherwise.

10

Control
Unit

Tape Unit

2

Figure 5.1 The control and tape units of the standard Turing machine.

c©John E Savage 5.1 The Standard Turing Machine Model 211

Accepter
for L

for L
(Decider)

Recognizer

w

“Yes”

(a) (b)

w

“Yes”

“No”

Figure 5.2 An accepter (a) for a language L is a Turing machine that can accept strings in a
language L but may not halt on all inputs. A decider or recognizer (b) for a language L is a Turing
machine that halts on all inputs and accepts strings in L.

The accepting halt state h has been singled out to emphasize language acceptance. How-
ever, there is nothing to prevent a TM from having multiple halt states, states from which it
does not exit. (A halt state can be realized by a state to which a TM returns on every input
without moving the tape head or changing the value under the head.) On the other hand, on
some inputs a TM may never halt. For example, it may endlessly move its tape head right one
cell and write the symbol a.

Notice that we do not require a TM M to halt on every input string for it to accept a
language L(M). It need only halt on those strings in the language. A language L for which
there is a TM M accepting L = L(M) that halts on all inputs is decidable. The distinction
between accepting and recognizing (or deciding) a language L is illustrated schematically in
Fig. 5.2. An accepter is a TM that accepts strings in L but may not halt on strings not in L.
When the accepter determines that the string w is in the language L, it turns on the “Yes”
light. If this light is not turned on, it may be that the string is not in L or that the TM is just
slow. On the other hand, a recognizer or decider is a TM that halts on all inputs and accepts
strings in L. The “Yes” or “No” light is guaranteed to be turned on at some time.

The computing power of the TM is extended by allowing partial computations, com-
putations on which the TM does not halt on every input. The computation of functions by
Turing machines is discussed in Section 5.9.

5.1.1 Programming the Turing Machine
Programming a Turing machine means choosing a tape alphabet and designing its control
unit, a finite-state machine. Since the FSM has been extensively studied elsewhere, we limit
our discussion of programming of Turing machines to four examples, each of which illustrates
a fundamental point about Turing machines. Although TMs are generally designed to perform
unbounded computations, their control units have a bounded number of states. Thus, we must
insure that as they move across their tapes they do not accumulate an unbounded amount of
information.

A simple example of a TM is one that moves right until it encounters a blank, whereupon
it halts. The TM of Fig. 5.3(a) performs this task. If the symbol under the head is 0 or 1,

212 Chapter 5 Computability Models of Computation

q a δ(σ, q)

q1 0 q1 R
q1 1 q1 R
q1 β h β

q a δ(σ, q)

q1 0 q2 β
q1 1 q3 β
q1 β h β
q2 0 q4 R
q2 1 q4 R
q2 β q4 R
q3 0 q5 R
q3 1 q5 R
q3 β q5 R
q4 0 q2 0
q4 1 q3 0
q4 β h 0
q5 0 q2 1
q5 1 q3 1
q5 β h 1

(a) (b)

Figure 5.3 The transition functions of two Turing machines, one (a) that moves across the
non-blank symbols on its tape and halts over the first blank symbol, and a second (b) that moves
the input string right one position and inserts a blank to its left.

it moves right. If it is the blank symbol, it halts. This TM can be extended to replace the
rightmost character in a string of non-blank characters with a blank. After finding the blank
on the right of a non-blank string, it backs up one cell and replaces the character with a blank.
Both TMs compute functions that map strings to strings.

A second example is a TM that replaces the first letter in its input string with a blank and
shifts the remaining letters right one position. (See Fig. 5.3(b).) In its initial state q1 this TM,
which is assumed to be given a non-blank input string, records the symbol under the tape head
by entering q2 if the letter is 0 or q3 if the letter is 1 and writing the blank symbol. In its
current state it moves right and enters a corresponding state. (It enters q4 if its current state
is q2 and q5 if it is q3.) In the new state it prints the letter originally in the cell to its left and
enters either q2 or q3 depending on whether the current cell contains 0 or 1. This TM can
be used to insert a special end-of-tape marker instead of a blank to the left of a string written
initially on a tape. This idea can generalized to insert a symbol anyplace in another string.

A third example of a TM M is one that accepts strings in the language L = {anbncn |n ≥
1}. M inserts an end-of-tape marker to the left of a string w placed on its tape and uses a
computation denoted C(x, y), in which it moves right across zero or more x’s followed by
zero or more “pseudo-blanks” (a symbol other than a, b, c, or β) to an instance of y, entering
a non-accepting halt state f if some other pattern of letters is found. Starting in the first cell,
if M discovers that the next letter is not a, it exits to state f . If it is a, it replaces a by a
pseudo-blank. It then executes C(a, b). M then replaces b by a pseudo-blank and executes
C(b, c), after which it replaces c by a pseudo-blank and executes C(c, β). It then returns to
the beginning of the tape. If it arrives at the end-of-tape marker without encountering any

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 213

instances of a, b, or c, it terminates in the accepting halt state h. If not, then it moves right
over pseudo-blanks until it finds an a, entering state f if it finds some other letter. It then
resumes the process executed on the first pass by invoking C(a, b). This computation either
enters the non-accepting halt state f or on each pass it replaces one instance each of a, b, and
c with a pseudo-blank. Thus, M accepts the language L = {anbncn |n ≥ 1}; that is, L
is decidable (recursive). Since M makes one pass over the tape for each instance of a, it uses
time O(n2) on a string of length n. Later we give examples of languages that are recursively
enumerable but not recursive.

In Section 3.8 we reasoned that any RAM computation can be simulated by a Turing
machine. We showed that any program written for the RAM can be executed on a Turing
machine at the expense of an increase in the running time from T steps on a RAM with S bits
of storage to a time O(ST log2 S) on the Turing machine.

5.2 Extensions to the Standard Turing Machine Model
In this section we examine various extensions to the standard Turing machine model and
establish their equivalence to the standard model. These extensions include the multi-tape,
nondeterministic, and oracle Turing machines.

We first consider the double-ended tape Turing machine. Unlike the standard TM that
has a tape bounded on one end, this is a TM whose single tape is double-ended. A TM of this
kind can be simulated by a two-track one-tape TM by reading and writing data on the top
track when working on cells to the right of the midpoint of the tape and reading and writing
data on the bottom track when working with cells to its left. (See Problem 5.7.)

5.2.1 Multi-Tape Turing Machines
A k-tape Turing machine has a control unit and k single-ended tapes of the kind shown in
Fig. 5.1. Each tape has its own head and operates in the fashion indicated for the standard
model. The FSM control unit accepts inputs from all tapes simultaneously, makes a state
transition based on this data, and then supplies outputs to each tape in the form of either a
letter to be written under its head or a head movement command. We assume that the tape
alphabet of each tape is Γ. A three-tape TM is shown in Fig. 5.4. A k-tape TM Mk can be
simulated by a one-tape TM M1, as we now show.

THEOREM 5.2.1 For each k-tape Turing machine Mk there is a one-tape Turing machine M1

such that a terminating T -step computation by Mk can be simulated in O(T 2) steps by M1.

Proof Let Γ and Γ′ be the tape alphabets of Mk and M1, respectively. Let |Γ′| = (2|Γ|)k

so that Γ′ has enough letters to allow the tape of M1 to be subdivided into k tracks, as
suggested in Fig. 5.5. Each cell of a track contains 2|Γ| letters, a number large enough to
allow each cell to contain either a member of Γ or a marked member of Γ. The marked
members retain their original identity but also contain the information that they have been
marked. As suggested in Fig. 5.5 for a three-tape TM, k heads can be simulated by one head
by marking the positions of the k heads on the tracks of M1.

M1 simulates Mk in two passes. First it visits marked cells to collect the letters under
the original tape heads, after which it makes a state transition akin to that made by Mk. In a
second pass it visits the marked cells either to change their entries or to move the simulated

214 Chapter 5 Computability Models of Computation

Control
Unit

Figure 5.4 A three-tape Turing machine.

Figure 5.5 A single tape of a TM with a large tape alphabet that simulates a three-tape TM
with a smaller tape alphabet.

tape heads. If the k-tape TM executes T steps, it uses at most T + 1 tape cells. Thus each
pass requires O(T) steps and the complete computation can be done in O(T 2) steps.

Multi-tape machines in which the tapes are double-ended are equivalent to multi-tape
single-ended Turing machines, as the reader can show.

5.2.2 Nondeterministic Turing Machines
The nondeterministic standard Turing machine (NDTM) is introduced in Section 3.7.1.
We use a slightly altered definition that conforms to the definition of the standard Turing
machine in Definition 5.1.1.

DEFINITION 5.2.1 A nondeterministic Turing machine (NDTM) is a seven-tuple M =
(Σ, Γ, β, Q, δ, s, h) where Σ is the choice input alphabet, Γ is the tape alphabet not con-
taining the blank symbol β, Q is the finite set of states, δ : Q × Σ × (Γ ∪ {β}) #→
(Q ∪ {h}) × (Γ ∪ {β} ∪ {L, R}) ∪ {⊥} is the next-state function, s is the initial state,
and h %∈ Q is the accepting halt state. A TM cannot exit from h. If M is in state q with letter
a under the tape head and δ(q, c, a) = (q′, C), its control unit enters state q′ and writes a′ if

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 215

qkq1 q2 q1 q2

(a) (b)

q

qk

q

Figure 5.6 The construction used to reduce the fan-out of a nondeterministic state.

C = a′ ∈ Γ ∪ {β}, or it moves the head left (if possible) or right if C is L or R, respectively. If
δ(q, c, a) =⊥, there is no successor to the current state with choice input c and tape symbol a.

An NDTM M reads one character of its choice input string c ∈ Σ∗ on each step. An NDTM
M accepts string w if there is some choice string c such that the last state entered by M is h when
M is started in state s with w placed left-adjusted on its otherwise blank tape, and the tape head
at the leftmost tape cell. An NDTM M accepts the language L(M) ⊆ Γ∗ consisting of those
strings w that it accepts. Thus, if w %∈ L(M), there is no choice input for which M accepts w.

If an NDTM has more than two nondeterministic choices for a particular state and letter
under the tape head, we can design another NDTM that has at most two choices. As suggested
in Fig. 5.6, for each state q that has k possible next states q1, . . . , qk for some input letter, we
can add k − 2 intermediate states, each with two outgoing edges such that a) in each state the
tape head doesn’t move and no change is made in the letter under the head, but b) each state
has the same k possible successor states. It follows that the new machine computes the same
function or accepts the same language as the original machine. Consequently, from this point
on we assume that there are either one or two next states from each state of an NDTM for
each tape symbol.

We now show that the range of computations that can be performed by deterministic and
nondeterministic Turing machines is the same. However, this does not mean that with the
identical resource bounds they compute the same set of functions.

THEOREM 5.2.2 Any language accepted by a nondeterministic standard TM can be accepted by a
standard deterministic one.

Proof The proof is by simulation. We simulate all possible computations of a nondeter-
ministic standard TM MND on an input string w by a deterministic three-tape TM MD

and halt if we find a sequence of moves by MND that leads to an accepting halt state. Later
this machine can be simulated by a one-tape TM. The three tapes of MD are an input
tape, a work tape, and enumeration tape. (See Fig. 5.7.) The input tape holds the in-
put and is never modified. The work tape is used to simulate MND. The enumeration
tape contains choice sequences used by MD to decide which move to make when simu-

216 Chapter 5 Computability Models of Computation

Unit

110

Control

Enumeration Tape

Work Tape

Read-Only Input Tape

Figure 5.7 A three-tape deterministic Turing machine that simulates a nondeterministic Turing
machine.

lating MND. These sequences are generated in lexicographical order, that is, in the order
0, 1, 00, 01, 10, 11, 000, 001, It is straightforward to design a deterministic TM that
generates these sequences. (See Problem 5.2.)

Breadth-first search is used. Since a string w is accepted by a nondeterministic TM if
there is some choice input on which it is accepted, a deterministic TM MD that accepts the
input w accepted by MND can be constructed by erasing the work tape, copying the input
sequence w to the work tape, placing the next choice input sequence in lexicographical or-
der on the enumeration tape (initially this is the sequence 0), and then simulating MND on
the work tape while reading one choice input from the enumeration tape on each step. If
MD runs out of choice inputs before reaching the halt state, the above procedure is restarted
with the next choice input sequence. This method deterministically accepts the input string
w if and only if there is some choice input to MND on which it is accepted.

Adding more than one tape to a nondeterministic Turing machine does not increase its
computing power. To see this, it suffices to simulate a multi-tape nondeterministic Turing
machine with a single-tape one, using a construction parallel to that of Theorem 5.2.1, and
then invoke the above result. Applying these observations to language acceptance yields the
following corollary.

COROLLARY 5.2.1 Any language accepted by a nondeterministic (multi-tape) Turing machine can
be accepted by a deterministic standard Turing machine.

We emphasize that this result does not mean that with identical resource bounds the de-
terministic and nondeterministic Turing machines compute the same set of functions.

5.2.3 Oracle Turing Machines
The oracle Turing machine (OTM) is a multi-tape TM or NDTM with a special oracle
tape and an associated oracle function h : B∗ #→ B∗, which need not be computable. (See
Fig. 5.8.) After writing a string z on its oracle tape, the OTM signals to the oracle to replace
z with the value h(z) of the oracle function. During a computation the OTM may consult

c©John E Savage 5.2 Extensions to the Standard Turing Machine Model 217

Input Tape

Work Tape

Oracle Tape

Unit
Control

Output Tape

Figure 5.8 The oracle Turing machine has an “oracle tape” on which it writes a string (a problem
instance), after which an “oracle” returns an answer in one step.

the oracle as many times as it wishes. Time on an OTM is the number of steps taken, where
one consultation of the oracle is counted as one step. Space is the number of cells used on
the work tapes of an OTM not including the oracle tape. The OTM machine can be used to
classify problems. (See Problem 8.15.)

5.2.4 Representing Restricted Models of Computation
Now that we have introduced a variety of Turing machine models, we ask how the finite-state
machine and pushdown automaton fit into the picture.

The finite-state machine can be viewed as a Turing machine with two tapes, the first a
read-only input tape and the second a write-only output tape. This TM reads consecutive
symbols on its input tape, moving right after reading each symbol, and writes outputs on its
output tape, moving right after writing each symbol. If this TM enters an accepting halt state,
the input sequence read from the tape is accepted.

The pushdown automaton can be viewed as a Turing machine with two tapes, a read-only
input tape and a pushdown tape. The pushdown tape is a standard tape that pushes a new
symbol by moving its head right one cell and writing the new symbol into this previously
blank cell. It pops the symbol at the top of the stack by copying the symbol, after which it
replaces it with the blank symbol and moves its head left one cell.

The Turing machine can be simulated by two pushdown tapes. The movement of the head
in one direction can be simulated by popping the top item of one stack and pushing it onto
the other stack. To simulate the movement of the head in the opposite direction, interchange
the names of the two stacks.

The nondeterministic equivalents of the finite-state machine and pushdown automaton
are obtained by making their Turing machine control units nondeterministic.

218 Chapter 5 Computability Models of Computation

5.3 Configuration Graphs
We now introduce configuration graphs, graphs that capture the state of Turing machines
with potentially unlimited storage capacity. We begin by describing configuration graphs for
one-tape Turing machines.

DEFINITION 5.3.1 The configuration of a standard Turing machine M at any point in time
is [x1x2 . . .pxj . . . xn], where p is the state of the control unit, the tape head is over the jth tape
cell, and x = (x1, x2, . . . , xn) is the string that contains all the non-blank symbols on the tape as
well as the symbol under the head. Here the state p is shown in boldface to the left of the symbol xj to
indicate that the tape head is over the jth cell. xn and some of the symbols to its left may be blanks.

To illustrate such configurations, consider a TM M that is in state p reading the third
symbol on its tape, which contains xyz. This information is captured by the configuration
[xypz]. If M changes to state q and moves its head right, then its new configuration is
[xyzqβ]. In this case we add a blank β to the right of the string xyz to insure that the head
resides over the string.

Because multi-tape TMs are important in classifying problems by their use of temporary
work space, a definition for the configuration of a multi-tape TM is desirable. We now intro-
duce a notation for this purpose that is somewhat more cumbersome than used for the standard
TM. This notation uses an explicit binary number for the position of each tape head.

DEFINITION 5.3.2 The configuration of a k-tape Turing machine M is (p, h1, h2, . . . , hk,
x1, x2, . . . , xk), where hr is the position of the head in binary on the rth tape, p is the state of
the control unit, and xr is the string on the rth tape that includes all the non-blank symbols as well
as the symbol under the head.

We now define configuration graphs for deterministic TMs and NDTMs. Because we will
apply configuration graphs to machines that halt on all inputs, we view them as acyclic.

DEFINITION 5.3.3 A configuration graph G(MND, w) associated with the NDTM MND is a
directed graph whose vertices are configurations of MND. (See Fig. 5.9.) There is a directed edge
between two vertices if for some choice input vector c MND can move from the first configuration to

Figure 5.9 The configuration graph G(MND, w) of a nondeterministic Turing machine MND

on input w has one vertex for each configuration of MND. The graph is acyclic. Heavy edges
identify the nondeterministic choices associated with each configuration.

c©John E Savage 5.4 Phrase-Structure Languages and Turing Machines 219

the second in one step. There is one configuration corresponding to the initial state of the machine
and one corresponding to the final state. (We assume without loss of generality that, after accepting
an input string, MND enters a cleanup phase during which it places a fixed string on each tape.)

Configuration graphs are used in the next section to associate a phrase-structure language
with a Turing machine. They are also used in many places in Chapter 8, especially in Sec-
tion 8.5.3, where they are used to establish an important relationship between deterministic
and nondeterministic space classes.

5.4 Phrase-Structure Languages and Turing Machines
We now demonstrate that the phrase-structure languages and the languages accepted by Turing
machines are the same. We begin by showing that every recursively enumerable language
is a phrase-structure language. For this purpose we use configurations of one-tape Turing
machines. Then, for each phrase-structure language L we describe the construction of a TM
accepting L. We conclude that the languages accepted by TMs and described by phrase-
structure grammars are the same.

With these conventions as background, if a standard TM halts in its accepting halt state,
we can require that it halt with β1β on its tape when it accepts the input string w. Thus,
the TM configuration when a TM halts and accepts its input string is [hβ1β]. Its starting
configuration is [sβw1w2 . . . wnβ], where w = w1w2 . . . wn.

THEOREM 5.4.1 Every recursively enumerable language is a phrase-structure language.

Proof Let M = (Γ, β, Q, δ, s, h) be a deterministic TM and let L(M) be the recursively
enumerable language over the alphabet Γ that it accepts. The goal is to show the existence of
a phrase-structure grammar G = (N , T ,R, S) that can generate each string w of L, and no
others. Since the TM accepting L halts with β1β on its tape when started with w ∈ L, we
design a grammar G that produces the configurations of M in reverse order. Starting with
the final configuration [hβ1β], G produces the starting configuration [sβw1w2 . . . wnβ],
where w = w1w2 . . . wn, after which it strips off the characters [sβ at the beginning and
β]. The grammar G defined below serves this purpose, as we show.

Let N = Q ∪ {S, β, [,]} and T = Γ. The rules R of G are defined as follows:

(a) S → [hβ1β]
(b) β] → ββ]
(c) [sβ → ε
(d) ββ] → β]
(e) β] → ε
(f) xq → px for all p ∈ Q and x ∈ (Γ ∪ {β})

such that δ(p, x) = (q, R)
(g) qzx → zpx for all p ∈ Q and x, z ∈ (Γ ∪ {β})

such that δ(p, x) = (q, L)
(h) qy → px for all p ∈ Q and x ∈ (Γ ∪ {β})

such that δ(p, x) = (q, y), y ∈ (Γ ∪ {β})

These rules are designed to start with the transition S → [hβ1β] (Rule (a)) and then
rewrite [hβ1β] using other rules until the configuration [sβw1w2 . . . wnβ] is reached. At

220 Chapter 5 Computability Models of Computation

this point Rule (c) is invoked to strip [sβ from the beginning of the string, and Rule (e) strips
β] from the end, thereby producing the string w1, w2, . . . , wn that was written initially on
M ’s tape.

Rule (b) is used to add blank space at the right-hand end of the tape. Rules (f)–(h)
mimic the transitions of M in reverse order. Rule (f) says that if M in state p reading x
moves to state q and moves its head right, then M ’s configuration contained the substring
px before the move and xq after it. Thus, we map xq into px with the rule xq → px.
Similar reasoning is applied to Rule (g). If the transition δ(p, x) = (q, y), y ∈ Γ ∪ {β}
is executed, M ’s configuration contained the substring px before the step and qy after it
because the head does not move.

Clearly, every computation by a TM M can be described by a sequence of configurations
and the transitions between these configurations can be described by this grammar G. Thus,
the strings accepted by M can be generated by G. Conversely, if we are given a derivation
in G, it produces a series of configurations characterizing computations by the TM M in
reverse order. Thus, the strings generated by G are the strings accepted by M .

By showing that every phrase-structure language can be accepted by a Turing machine, we
will have demonstrated the equivalence between the phrase-structure and recursively enumer-
able languages.

THEOREM 5.4.2 Every phrase-structure language is recursively enumerable.

Proof Given a phrase-structure grammar G, we construct a nondeterministic two-tape TM
M with the property that L(G) = L(M). Because every language accepted by a multi-tape
TM is accepted by a one-tape TM and vice versa, we have the desired conclusion.

To decide whether or not to accept an input string placed on its first (input) tape, M
nondeterministically generates a terminal string on its second (work) tape using the rules of
G. To do so, it puts G’s start symbol on its work tape and then nondeterministically expands
it into a terminal string using the rules of G. After producing a terminal string, M compares
the input string with the string on its work tape. If they agree in every position, M accepts
the input string. If not, M enters an infinite loop. To write the derived strings on its work
tape, M must either replace, delete, or insert characters in the string on its tape, tasks well
suited to Turing machines.

Since it is possible for M to generate every string in L(G) on its work tape, it can accept
every string in L(G). On the other hand, every string accepted by M is a string that it can
generate using the rules of G. Thus, every string accepted by M is in L(G). It follows that
L(M) = L(G).

This last result gives meaning to the phrase “recursively enumerable”: the languages ac-
cepted by Turing machines (the recursively enumerable languages) are languages whose strings
can be enumerated by a Turing machine (a recursive device). Since an NDTM can be simu-
lated by a DTM, all strings accepted by a TM can be generated deterministically in sequence.

5.5 Universal Turing Machines
A universal Turing machine is a Turing machine that can simulate the behavior of an arbitrary
Turing machine, even the universal Turing machine itself. To give an explicit construction for
such a machine, we show how to encode Turing machines as strings.

c©John E Savage 5.5 Universal Turing Machines 221

Without loss of generality we consider only deterministic Turing machines M = (Γ, β, Q,
δ, s, h) that have a binary tape alphabet Γ = B = {0, 1}. When M is in state p and the
value under the head is a, the next-state function δ : Q × (Γ ∪ {β}) #→ (Q ∪ {h}) ×
(Γ ∪ {β} ∪ {L, R}) takes M to state q and provides output z, where δ(p, a) = (q, z) and
z ∈ Γ ∪ {β} ∪ {L, R}.

We now specify a convention for numbering states that simplifies the description of the
next-state function δ of M .

DEFINITION 5.5.1 The canonical encoding of a Turing machine M , ρ(M), is a string over the
10-letter alphabet Λ = {<, >, [,], #, 0, 1, β, R, L} formed as follows:

(a) Let Q = {q1, q2, . . . , qk} where s = q1. Represent state qi in unary notation by the string
1i. The halt state h is represented by the empty string.

(b) Let (q, z) be the value of the next-state function when M is in state p reading a under
its tape head; that is, δ(p, a) = (q, z). Represent (q, z) by the string < z#q > in which q is
represented in unary and z ∈ {0, 1, β, L, R}. If q = h, the value of the next-state function is
< z# >.

(c) For p ∈ Q, the three values < z′#q′ >, < z′′#q′′ >, and < z′′′#q′′′ > of δ(p, 0),
δ(p, 1), and δ(p, β) are assembled as a triple [< z′#q′ >< z′′#q′′ >< z′′′#q′′′ >]. The
complete description of the next-state function δ is given as a sequence of such triples, one for each
state p ∈ Q.

To illustrate this definition, consider the two TMs whose next-state functions are shown in
Fig. 5.3. The first moves across the non-blank initial string on its tape and halts over the first
blank symbol. The second moves the input string right one position and inserts a blank to its
left. The canonical encoding of the first TM is [< R#1 > < R#1 > < β# >] whereas that
of the second is

[< β#11 > < β#111 > < β# >]

[< R#1111 > < R#1111 > < R#1111 >]

[< R#11111 > < R#11111 > < R#11111 >]

[< 0#11 > < 0#111 > < 0# >]

[< 1#11 > < 1#111 > < 1# >]

It follows that the canonical encodings of TMs are a subset of the strings defined by the
regular expression ([(< {0, 1, β, L, R}#1∗ >)3])∗ which a TM can analyze to insure that for
each state and tape letter there is a valid action.

A universal Turing machine (UTM) U is a Turing machine that is capable of simulating
an arbitrary Turing machine on an arbitrary input word w. The construction of a UTM based
on the simulation of the random-access machine is described in Section 3.8. Here we describe
a direct construction of a UTM.

Let the UTM U have a 20-letter alphabet Λ̂ containing the 10 symbols in Λ plus another
10 symbols that are marked copies of the symbols in Λ. (The marked copies are used to

simulate multiple tracks on a one-track TM.) That is, we define Λ̂ as follows:

Λ̂ = {<, >, [,], #, 0, 1, β, R, L} ∪ {<̂, >̂, [̂,]̂, #̂, 0̂, 1̂, β̂, R̂, L̂}

To simulate the TM M on the input string w, we place M ’s canonical encoding, ρ(M),
on the tape of the UTM U preceded by β and followed by w, as suggested in Fig. 5.10. The

222 Chapter 5 Computability Models of Computation

Unit
Control

β

wρ(M)

Figure 5.10 The initial configuration of the tape of a universal TM that is prepared to simulate
the TM M on input w. The left end-of-tape marker is the blank symbol β.

first letter of w follows the rightmost bracket,], and is marked by replacing it with its marked
equivalent, ŵ1. The current state q of M is identified by replacing the left bracket, [, in q’s

triple by its marked equivalent, [̂. U simulates M by reading the marked input symbol a,
the one that resides under M ’s simulated head, and advancing its own head to the triple to

the right of [̂ that corresponds to a. (Before it moves its head, it replaces [̂ with [.) That is, it
advances its head to the first, second, or third triple associated with the current state depending
on whether a is 0, 1, or β. It then changes < to <̂, moves to the symbol following <̂ and takes
the required action on the simulated tape. If the action requires writing a symbol, it replaces a
with a new marked symbol. If it requires moving M ’s head, the marking on a is removed and
the appropriate adjacent symbol is marked. U returns to <̂ and removes the mark.

The UTM U moves to the next state as follows. It moves its head three places to the
right of <̂ after changing it to <, at which point it is to the right of #, over the first digit
representing the next state. If the symbol in this position is >, the next state is h, the halting
state, and the UTM halts. If the symbol is 1, U replaces it with 1̂ and then moves its head
left to the leftmost instance of [(the leftmost tape cell contains β, an end-of tape marker). It
marks [and returns to 1̂. It replaces 1̂ with 1 and moves its head right one place. If U finds the

symbol 1, it marks it, moves left to [̂, restores it to [and then moves right to the next instance
of [and marks it. It then moves right to 1̂ and repeats this operation. However, if the UTM
finds the symbol >, it has finished updating the current state so it moves right to the marked
tape symbol, at which point it reads the symbol under M ’s head and starts another transition
cycle. The details of this construction are left to the reader. (See Problem 5.15.)

5.6 Encodings of Strings and Turing Machines
Given an alphabet A with an ordering of its letters, strings over this alphabet have an order
known as the standard lexicographical order, which we now define. In this order, strings of
length n − 1 precede strings of length n. Thus, if A = {0, 1, 2}, 201 < 0001. Among the
strings of length n, if a and b are in A and a < b, then all strings beginning with a precede
those beginning with b. For example, if 0 < 1 < 2 in A = {0, 1, 2}, then 022 < 200. If two
strings of length n have the same prefix u, the ordering between them is determined by the

c©John E Savage 5.7 Limits on Language Acceptance 223

order of the next letter. For example, for the alphabet A and the ordering given on its letters,
201021 < 201200.

A simple algorithm produces the strings over an alphabet in lexicographical order. Strings
of length 1 are produced by enumerating the letters from the alphabet in increasing order.
Strings of length n are enumerated by choosing the first letter from the alphabet in increasing
order. The remaining n − 1 letters are generated in lexicographical order by applying this
algorithm recursively on strings of length n − 1.

To prepare for later results, we observe that it is straightforward to test an arbitrary string
over the alphabet Λ given in Definition 5.5.1 to determine if it is a canonical description ρ(M)
of a Turing machine M . Each must be contained in ([(< {0, 1, β, L, R}#1∗ >)3])∗ and have
a transition for each state and tape letter. If a putative encoding is not canonical, we associate
with it the two-state null TM Tnull with next-state function satisfying δ(s, a) = (h, a) for all
tape letters a. This encoding associates a Turing machine with each string over the alphabet Λ.

We now show how to identify the jth Turing machine, Mj . Given an order to the
symbols in Λ, strings over this alphabet are generated in lexicographical order. We define the
null TM to be the zeroth TM. Each string over Λ that is not a canonical encoding is associated
with this machine. The first TM is the one described by the lexicographically first string over
Λ that is a canonical encoding. The second TM is described by the second canonical encoding,
etc. Not only does a TM determine which string is a canonical encoding, but when combined
with an algorithm to generate strings in lexicographical order, this procedure also assigns a
Turing machine to each string and allows the jth Turing machine to be found.

Observe that there is no loss in generality in assuming that the encodings of Turing ma-
chines are binary strings. We need only create a mapping from the letters in the alphabet Λ
to binary strings. Since it may be necessary to use marked letters, we can assume that the 20

strings in Λ̂ are available and are encoded into 5-bit binary strings. This allows us to view
encodings of Turing machines as binary strings but to speak of the encodings in terms of the
letters in the alphabet Λ.

5.7 Limits on Language Acceptance
A language L that is decidable (also called recursive) has an algorithm, a Turing machine
that halts on all inputs and accepts just those strings in L. A language for which there is a
Turing machine that accepts just those strings in L, possibly not halting on strings not in L,
is recursively enumerable. A language that is recursively enumerable but not decidable is
unsolvable.

We begin by describing some decidable languages and then exhibit a language, L1, that
is not recursively enumerable (no Turing machine exists to accepts strings in it) but whose
complement, L2, is recursively enumerable but not decidable; that is, L2 is unsolvable. We use
the language L2 to show that other languages, including the halting problem, are unsolvable.

5.7.1 Decidable Languages
Our first decidable problem is the language of pairs of regular expressions and strings such that
the regular expression describes a language containing the corresponding string:

LRX = {R, w | w is in the language described by the regular expression R}

224 Chapter 5 Computability Models of Computation

THEOREM 5.7.1 The language LRX is decidable.

Proof To decide on a string R, w, use the method of Theorem 4.4.1 to construct a NFSM
M1 that accepts the language described by R. Then invoke the method of Theorem 4.2.1
to construct a DFSM M2 accepting the same language as M1. The string w is given to M2,
which accepts it if R can generate it and rejects it otherwise. This procedure decides LRX

because it halts on all strings R, w, whether in LRX or not.

As a second example, we show that finite-state machines that recognize empty languages
are decidable. Here an FSM encoded as Turing machine reads one input from the tape per
step and makes a state transition, halting when it reaches the blank letter.

THEOREM 5.7.2 The language L = {ρ(M) | M is a DFSM and L(M) = ∅} is decidable.

Proof L(M) is not empty if there is some string w it can accept. To determine if there
is such a string, we use a TM M ′ that executes a breadth-first search on the graph of the
DFSM M that is provided as input to M ′. M ′ first marks the initial state of M and then
repeatedly marks any state that has not been marked previously and can be reached from a
marked state until no additional states can be marked. This process terminates because M
has a finite number of states. Finally, M ′ checks to see if there is a marked accepting state
that can be reached from the initial state, rejecting the input ρ(M) if so and accepting it if
not.

The third language describes context-free grammars generating languages that are empty.
Here we encode the definition of a context-free grammar G as a string ρ(G) over a small
alphabet.

THEOREM 5.7.3 The language L = {ρ(G) | G is a CFG and L(G) = ∅} is decidable.

Proof We design a TM M ′ that, when given as input a description ρ(G) of a CFG G,
first marks all the terminals of the grammar and then scans all the rules of the grammar,
marking non-terminal symbols that can be replaced by some marked symbols. (If there is a
non-terminal A that it is not marked and there is a rule A → BCD in which B, C, D have
already been marked, then the TM also marks A.) We repeat this procedure until no new
non-terminals can be marked. This process terminates because the grammar G has a finite
number of non-terminals. If S is not marked, we accept ρ(G). Otherwise, we reject ρ(G)
because it is possible to generate a string of terminals from S.

5.7.2 A Language That Is Not Recursively Enumerable
Not unexpectedly, there are well-defined languages that are not recursively enumerable, as we
show in this section. We also show that the complement of a decidable language is decidable.
This allows us to exhibit a language that is recursively enumerable but undecidable.

Consider the language L1 defined below. It contains the ith binary input string if it is not
accepted by the ith Turing machine.

L1 = {wi |wi is not accepted by Mi}

THEOREM 5.7.4 The language L1 is not recursively enumerable; that is, no Turing machine exists
that can accept all the strings in this language.

c©John E Savage 5.7 Limits on Language Acceptance 225

...

...

...

...

...

...

...

...

w2

w1

wk

accept

ρ(M2)

reject

reject

?

ρ(Mk)

accept

ρ(M1)

reject

reject

accept

accept

Figure 5.11 A table whose rows and columns are indexed by input strings and Turing ma-
chines, respectively. Here wi is the ith input string and ρ(Mj) is the encoding of the jth Turing
machine. The entry in row i, column j indicates whether or not Mj accepts wi. The language
L1 consists of input strings wj for which the entry in the jth row and jth column is reject.

Proof We use proof by contradiction; that is, we assume the existence of a TM Mk that
accepts L1. If wk is in L1, then Mk accepts it, contradicting the definition of L1. This
implies that wk is not in L1. On the other hand, if wk is not in L1, then it is not accepted
by Mk. It follows from the definition of L1 that wk is in L1. Thus, wk is in L1 if and only
if it is not in L1. We have a contradiction and no Turing machine accepts L1.

This proof uses diagonalization. (See Fig. 5.11.) In effect, we construct an infinite two-
dimensional matrix whose rows are indexed by input words and whose columns are indexed
by Turing machines. The entry in row i and column j of this matrix specifies whether or not
input word wi is accepted by Mj . The language L1 contains those words wj that Mj rejects,
that is, it contains row indices (words) for which the word “reject” is found on the diagonal.
If we assume that some TM, Mk, accepts L1, we have a problem because we cannot decide
whether or not wk is in L1. Diagonalization is effective in ruling out the possibility of solving
a computational problem but has limited usefulness on problems of bounded size.

5.7.3 Recursively Enumerable but Not Decidable Languages
We show the existence of a language that is recursively enumerable but not decidable. Our
approach is to show that the complement of a recursive language is recursive and then exhibit
a recursively enumerable language L2 whose complement L1 is not recursively enumerable:

L2 = {wi |wi is accepted by Mi}

THEOREM 5.7.5 The complement of a decidable language is decidable.

Proof Let L be a recursive language accepted by a Turing machine M1 that halts on all
input strings. Relabel the accepting halt state of M1 as non-accepting and all non-accepting
halt states as accepting. This produces a machine M2 that enters an accepting halt state only
when M1 enters a non-accepting halt state and vice versa. We convert this non-standard
machine to standard form (having one accepting halt state) by adding a new accepting halt

226 Chapter 5 Computability Models of Computation

state and making a transition to it from all accepting halt states. This new machine halts on
all inputs and accepts the complement of L.

THEOREM 5.7.6 The language L2 is recursively enumerable but not decidable.

Proof To establish the desired result it suffices to exhibit a Turing machine M that accepts
each string in L2, because the complement L2 = L1, which is not recursively enumerable,
as shown above.

Given a string x in B∗, let M enumerate the input strings over the alphabet B of L2

until it finds x. Let x be the ith string where i is recorded in binary on one of M ’s tapes.
The strings over the alphabet Λ used for canonical encodings of Turing machines are enu-
merated and tested to determine whether or not they are canonical encodings, as described
in Section 5.6. When the encoding ρ(Mi) of the ith Turing machine is discovered, Mi is
simulated with a universal Turing machine on the input string x. This universal machine
will halt and accept the string x if it is in L2. Thus, L2 is recursively enumerable.

5.8 Reducibility and Unsolvability
In this section we show that there are many languages that are unsolvable (undecidable). In the
previous section we showed that the language L2 is unsolvable. To show that a new problem
is unsolvable we use reducibility: we assume an algorithm A exists for a new language L and
then show that we can use A to obtain an algorithm for a language previously shown to be
unsolvable, thereby contradicting the assumption that algorithm A exists.

We begin by introducing reducibility and then give examples of unsolvable languages.
Many interesting languages are unsolvable.

5.8.1 Reducibility
A new language Lnew can often be shown unsolvable by assuming it is solvable and then
showing this implies that an older language Lold is solvable, where Lold has been previously
shown to be unsolvable. Since this contradicts the facts, the new language cannot be solvable.
This is one application of reducibility. The formal definition of reducibility is given below
and illustrated by Fig. 5.12.

DEFINITION 5.8.1 The language L1 is reducible to the language L2 if there is an algorithm
computing a total function f : C∗ #→ D∗ that translates each string w over the alphabet C of L1

into a string z = f(w) over the alphabet D of L2 such that w ∈ L1 if and only if z ∈ L2.

In this definition, testing for membership of a string w in L1 is reduced to testing for
membership of a string z in L2, where the latter problem is presumably a previously solved
problem. It is important to note that the latter problem is no easier than the former, even
though the use of the word “reduce” suggests that it is. Rather, reducibility establishes a link
between two problems with the expectation that the properties of one can be used to deduce
properties of the other. For example, reducibility is used to identify NP-complete problems.
(See Sections 3.9.3 and 8.7.)

c©John E Savage 5.8 Reducibility and Unsolvability 227

φ2f

φ1(x) = φ2(f(x))x

φ1

Figure 5.12 The characteristic function φi of Li, i = 1, 2 has value 1 on strings in Li and
0 otherwise. Because the language L1 is reducible to the language L2, there is a function f such
that for all x, φ1(x) = φ2(f(x)).

Reducibility is a fundamental idea that is formally introduced in Section 2.4 and used
throughout this book. Reductions of the type defined above are known as many-to-one re-
ductions. (See Section 8.7 for more on this subject.)

The following lemma is a tool to show that problems are unsolvable. We use the same
mechanism in Chapter 8 to classify languages by their use of time, space and other computa-
tional resources.

LEMMA 5.8.1 Let L1 be reducible to L2. If L2 is decidable, then L1 is decidable. If L1 is
unsolvable and L2 is recursively enumerable, L2 is also unsolvable.

Proof Let T be a Turing machine implementing the algorithm that translates strings over
the alphabet of L1 to strings over the alphabet of L2. If L2 is decidable, there is a halting
Turing machine M2 that accepts it. A multi-tape Turing machine M1 that decides L1 can
be constructed as follows: On input string w, M1 invokes T to generate the string z, which
it then passes to M2. If M2 accepts z, M1 accepts w. If M2 rejects it, so does M1. Thus,
M1 decides L1.

Suppose now that L1 is unsolvable. Assuming that L2 is decidable, from the above con-
struction, L1 is decidable, contradicting this assumption. Thus, L2 cannot be decidable.

The power of this lemma will be apparent in the next section.

5.8.2 Unsolvable Problems
In this section we examine six representative unsolvable problems. They range from the classi-
cal halting problem to Rice’s theorem.

We begin by considering the halting problem for Turing machines. The problem is to
determine for an arbitrary TM M and an arbitrary input string x whether M with input x
halts or not. We characterize this problem by the language LH shown below. We show it is
unsolvable, that is, LH is recursively enumerable but not decidable. No Turing machine exists
to decide this language.

LH = {ρ(M), w | M halts on input w}

228 Chapter 5 Computability Models of Computation

THEOREM 5.8.1 The language LH is recursively enumerable but not decidable.

Proof To show that LH is recursively enumerable, pass the encoding ρ(M) of the TM M
and the input string w to the universal Turing machine U of Section 5.5. This machine
simulates M and halts on the input w if and only if M halts on w. Thus, LH is recursively
enumerable.

To show that LH is undecidable, we assume that LH is decidable by a Turing machine
MH and show a contradiction. Using MH we construct a Turing machine M∗ that decides
the language L∗ = {ρ(M), w | w is not accepted by M}. M∗ simulates MH on ρ(M), w
to determine whether M halts or not on w. If MH says that M does not halt, M∗ accepts
w. If MH says that M does halt, M∗ simulates M on input string w and rejects w if M
accepts it and accepts w if M rejects it. Thus, if LH is decidable, so is L∗.

The procedures described in Section 5.6 can be used to design a Turing machine M!

that determines for which integer i the input string w is lexicographically the ith string, wi,
and also produce the description ρ(Mi) of the ith Turing machine Mi.

To decide L1 we use M! to translate an input string w = wi to the string ρ(Mi), wi.
Given the presumed existence of M∗, we can decide L1 by deciding L∗. However, by
Theorem 5.7.4, L1 is not decidable (it is not even recursively enumerable). Thus, L∗ is not
decidable which implies that LH is also not decidable.

The second unsolvable problem we consider is the empty tape acceptance problem: given
a Turing machine M , we ask if we can tell whether it accepts the empty string. We reduce the
halting problem to it. (See Fig. 5.13.)

LET = {ρ(M) | L(M) contains the empty string}

THEOREM 5.8.2 The language LET is not decidable.

Proof To show that LET is not decidable, we assume that it is and derive a contradiction.
The contradiction is produced by assuming the existence of a TM MET that decides LET

and then showing that this implies the existence of a TM MH that decides LH.
Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM

MH constructs a TM T (M , w) that writes w on the tape when the tape is empty and
simulates M on w, halting if M halts. Thus, T (M , w) accepts the empty tape if M halts
on w. MH decides LH by constructing an encoding of T (M , w) and passing it to MET.
(See Fig. 5.13.) The language accepted by T (M , w) includes the empty string if and only

“Yes”Decide

Empty String

“No”
Decide Halt

T (M , w)

w

ρ(M)

Figure 5.13 Schematic representation of the reduction from LH to LET.

c©John E Savage 5.8 Reducibility and Unsolvability 229

if M halts on w. Thus, MH decides the halting problem, which as shown earlier cannot be
decided.

The third unsolvable problem we consider is the empty set acceptance problem: Given a
Turing machine, we ask if we can tell if the language it accepts is empty. We reduce the halting
problem to this language.

LEL = {ρ(M) | L(M) = ∅}

THEOREM 5.8.3 The language LEL is not decidable.

Proof We reduce LH to LEL, assume that LEL is decidable by a TM MEL, and then show
that a TM MH exists that decides LH , thereby establishing a contradiction.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a TM T (M , w) that accepts the string placed on its tape if it is w and M
halts on it; otherwise it enters an infinite loop. MH can implement T (M , w) by entering an
infinite loop if its input string is not w and otherwise simulating M on w with a universal
Turing machine.

It follows that L(T (M , w)) is empty if M does not halt on w and contains w if it does
halt. Under the assumption that MEL decides LEL, MH can decide LH by constructing
T (M , w) and passing it to MEL, which accepts ρ(T (M , w)) if M does not halt on w and
rejects it if M does halt. Thus, MH decides LH , a contradiction.

The fourth problem we consider is the regular machine recognition problem. In this
case we ask if a Turing machine exists that can decide from the description of an arbitrary
Turing machine M whether the language accepted by M is regular or not:

LR = {ρ(M) | L(M) is regular}

THEOREM 5.8.4 The language LR is not decidable.

Proof We assume that a TM MR exists to decide LR and show that this implies the exis-
tence of a TM MH that decides LH , a contradiction. Thus, MR cannot exist.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a TM T (M , w) that scans its tape. If it finds a string in {0n1n | n ≥ 0}, it
accepts it; if not, T (M , w) erases the tape and simulates M on w, halting only if M halts
on w. Thus, T (M , w) accepts all strings in B∗ if M halts on w but accepts only strings
in {0n1n | n ≥ 0} otherwise. Thus, T (M , w) accepts the regular language B∗ if M halts
on w and accepts the context-free language {0n1n | n ≥ 0} otherwise. Thus, MH can be
implemented by constructing T (M , w) and passing it to MR, which is presumed to decide
LR.

The fifth problem generalizes the above result and is known as Rice’s theorem. It says that
no algorithm exists to determine from the description of a TM whether or not the language it
accepts falls into any proper subset of the recursively enumerable languages.

Let RE be the set of recursively enumerable languages over B. For each set C that is a
proper subset of RE, define the following language:

LC = {ρ(M) | L(M) ∈ C}

Rice’s theorem says that, for all C such that C %= ∅ and C ⊂ RE, the language LC defined above
is undecidable.

230 Chapter 5 Computability Models of Computation

THEOREM 5.8.5 (Rice) Let C ⊂ RE, C %= ∅. The language LC is not decidable.

Proof To prove that LC is not decidable, we assume that it is decidable by the TM MC and
show that this implies the existence of a TM MH that decides LH , which has been shown
previously not to exist. Thus, MC cannot exist.

We consider two cases, the first in which B∗ is in not C and the second in which it is in
C. In the first case, let L be a language in C. In the second, let L be a language in RE − C.
Since C is a proper subset of RE and not empty, there is always a language L such that one
of L and B∗ is in C and the other is in its complement RE − C.

Given an encoding ρ(M) for an arbitrary TM M and an arbitrary input w, the TM
MH constructs a (four-tape) TM T (M , w) that simulates two machines in parallel (by al-
ternatively simulating one step of each machine). The first, M0, uses a phrase-structure
grammar for L to see if T (M , w)’s input string x is in L; it holds x on one tape, holds the
current choice inputs for the NDTM ML of Theorem 5.4.2 on a second, and uses a third
tape for the deterministic simulation of ML. (See the comments following Theorem 5.4.2.)
T (M , w) halts if M0 generates x. The second TM writes w on the fourth tape and sim-
ulates M on it. T (M , w) halts if M halts on w. Thus, T (M , w) accepts the regular
language B∗ if M halts on w and accepts L otherwise. Thus, MH can be implemented by
constructing T (M , w) and passing it to MC , which is presumed to decide LC .

Our last problem is the self-terminating machine problem. The question addressed is
whether a Turing machine M given a description ρ(M) of itself as input will halt or not. The
problem is defined by the following language. We give a direct proof that it is undecidable;
that is, we do not reduce some other problem to it.

LST = {ρ(M) | M is self-terminating}

THEOREM 5.8.6 The language LST is recursively enumerable but not decidable.

Proof To show that LST is recursively enumerable we exhibit a TM T that accepts strings
in LST. T makes a copy of its input string ρ(M) and simulates M on ρ(M) by passing
(ρ(M), ρ(M)) to a universal TM that halts and accepts ρ(M) if it is in LST.

To show that LST is not decidable, we assume that it is and arrive at a contradiction.
Let MST decide LST. We design a TM M∗ that does the following: M∗ simulates MST on
the input string w. If MST halts and accepts w, M∗ enters an infinite loop. If MST halts
and rejects w, M∗ accepts w. (MST halts on all inputs.)

The new machine M∗ is either self-terminating or it is not. If M∗ is self-terminating,
then on input ρ(M∗), which is an encoding of itself, M∗ enters an infinite loop because
MST detects that it is self-terminating. Thus, M∗ is not self-terminating. On the other
hand, if M∗ is not self-terminating, on input ρ(M∗) it halts and accepts ρ(M∗) because
MST detects that it is not self-terminating and enters the rejecting halt state. But this con-
tradicts the assumption that M∗ is not self-terminating. Since we arrive at a contradiction
in both cases, the assumption that LST is decidable must be false.

5.9 Functions Computed by Turing Machines
In this section we introduce the partial recursive functions, a family of functions in which
each function is constructed from three basic function types, zero, successor, and projection,

c©John E Savage 5.9 Functions Computed by Turing Machines 231

and three operations on functions, composition, primitive recursion, and minimalization. Al-
though we do not have the space to show this, the functions computed by Turing machines are
exactly the partial recursive functions. In this section, we show one half of this result, namely,
that every partial recursive function can be encoded as a RAM program (see Section 3.4.3) that
can be executed by Turing machines.

We begin with the primitive recursive functions then describe the partial recursive func-
tions. We then show that partial recursive functions can be realized by RAM programs.

5.9.1 Primitive Recursive Functions
Let = {0, 1, 2, 3, . . .} be the set of non-negative integers. The partial recursive functions,
f : n #→ m, map n-tuples of integers over to m-tuples of integers in for arbitrary
n and m. Partial recursive functions may be partial functions. They are constructed from
three base function types, the successor function S : #→ , where S(x) = x + 1,
the predecessor function P : #→ , where P (x) returns either 0 if x = 0 or the
integer one less than x, and the projection functions Un

j : n #→ , 1 ≤ j ≤ n, where
Un

j (x1, x2, . . . , xn) = xj . These basic functions are combined using a finite number of
applications of function composition, primitive recursion, and minimalization.

Function composition is studied in Chapters 2 and 6. A function f : n #→ of n
arguments is defined by the composition of a function g : m #→ of m arguments with
m functions f1 : n #→ , f2 : n #→ , . . . , fm : n #→ , each of n arguments, as
follows:

f(x1, x2, . . . , xn) = g(f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn))

A function f : n+1 #→ of n + 1 arguments is defined by primitive recursion from a
function g : n #→ of n arguments and a function h : n+2 #→ on n + 2 arguments
if and only if for all values of x1, x2, . . . , xn and y in :

f(x1, x2, . . . , xn, 0) = g(x1, x2, . . . , xn)

f(x1, x2, . . . , xn, y + 1) = h(x1, x2, . . . , xn, y, f(x1, x2, . . . , xn, y))

In the above definition if n = 0, we adopt the convention that the value of f is a constant.
Thus, f(x1, x2, . . . , xn, k) is defined recursively in terms of h and itself with k replaced by
k − 1 unless k = 0.

DEFINITION 5.9.1 The class of primitive recursive functions is the smallest class of functions
that contains the base functions and is closed under composition and primitive recursion.

Many functions of interest are primitive recursive. Among these is the zero function
Z : #→ , where Z(x) = 0. It is defined by primitive recursion by Z(0) = 0 and

Z(x + 1) = U 2
2 (x, Z(x))

Other important primitive recursive functions are addition, subtraction, multiplication, and
division, as we now show. Let fadd : 2 #→ , fsub : 2 #→ , fmult : 2 #→ , and
fdiv : 2 #→ denote integer addition, subtraction, multiplication, and division.

For the integer addition function fadd introduce the function h1 : 3 #→ on three
arguments, where h1 is defined below in terms of the successor and projection functions:

h1(x1, x2, x3) = S(U 3
3 (x1, x2, x3))

232 Chapter 5 Computability Models of Computation

Then, h1(x1, x2, x3) = x3 + 1. Now define fadd(x, y) using primitive recursion, as follows:

fadd(x, 0) = U 1
1 (x)

fadd(x, y + 1) = h1(x, y, fadd(x, y))

The role of h is to carry the values of x and y from one recursive invocation to another. To
determine the value of fadd(x, y) from this definition, if y = 0, fadd(x, y) = x. If y > 0,
fadd(x, y) = h1(x, y − 1, fadd(x, y − 1)). This in turn causes other recursive invocations of
fadd. The infix notation + is used for fadd; that is, fadd(x, y) = x + y.

Because the primitive recursive functions are defined over the non-negative integers, the
subtraction function fsub(x, y) must return the value 0 if y is larger than x, an operation
called proper subtraction. (Its infix notation is · and we write fsub(x, y) = x · y.) It is
defined as follows:

fsub(x, 0) = U 1
1 (x)

fsub(x, y + 1) = U 3
3 (x, y, P (fsub(x, y)))

The value of fsub(x, y) is x if y = 0 and is the predecessor of fsub(x, y − 1) otherwise.
The integer multiplication function, fmult, is defined in terms of the function h2 :

3 #→ :

h2(x1, x2, x3) = fadd(U 3
1 (x1, x2, x3), U 3

3 (x1, x2, x3))

Using primitive recursion, we have

fmult(x, 0) = Z(x)

fmult(x, y + 1) = h2(x, y, fmult(x, y))

The value of fmult(x, y) is zero if y = 0 and otherwise is the result of adding x to itself y
times. To see this, note that the value of h2 is the sum of its first and third arguments, x and
fmult(x, y). On each invocation of primitive recursion the value of y is decremented by 1
until the value 0 is reached. The definition of the division function is left as Problem 5.26.

Define the function fsign : #→ so that fsign(0) = 0 and fsign(x + 1) = 1. To
show that fsign is primitive recursive it suffices to invoke the projection operator formally. A
function with value 0 or 1 is called a predicate.

5.9.2 Partial Recursive Functions
The partial recursive functions are obtained by extending the primitive recursive functions to
include minimalization. Minimalization defines a function f : n #→ in terms of a
second function g : n+1 #→ by letting f(x) be the smallest integer y ∈ such that
g(x, y) = 0 and g(x, z) is defined for all z ≤ y, z ∈ . Note that if g(x, z) is not defined
for all z ≤ y, then f(x) is not defined. Thus, minimalization can result in partial functions.

DEFINITION 5.9.2 The set of partial recursive functions is the smallest set of functions contain-
ing the base functions that is closed under composition, primitive recursion, and minimalization.

A partial recursive function that is defined for all points in its domain is called a recursive
function.

c©John E Savage Problems 233

5.9.3 Partial Recursive Functions are RAM-Computable
There is a nice correspondence between RAM programs and partial recursive functions. The
straight-line programs result from applying composition to the base functions. Adding primi-
tive recursion corresponds to adding for-loops whereas adding minimilization corresponds to
adding while loops.

It is not difficult to see that every partial recursive function can be described by a program
in the RAM assembly language of Section 3.4.3. For example, to compute the zero function,
Z(x), it suffices for a RAM program to clear register R1. To compute the successor function,
S(x), it suffices to increment register R1. Similarly, to compute the projection function Un

j ,
one need only load register R1 with the contents of register Rj . Function composition it is
straightforward: one need only insure that the functions fj , 1 ≤ j ≤ m, deposit their values
in registers that are accessed by g. Similar constructions are possible for primitive recursion
and minimalization. (See Problems 5.29, 5.30, and 5.31.)

. .
Problems
THE STANDARD TURING MACHINE MODEL

5.1 Show that the standard Turing machine model of Section 5.1 and the model of Sec-
tion 3.7 are equivalent in that one can simulate the other.

PROGRAMMING THE TURING MACHINE

5.2 Describe a Turing machine that generates the binary strings in lexicographical order.
The first few strings in this ordering are 0, 1, 00, 01, 10, 11, 000, 001,

5.3 Describe a Turing machine recognizing {xiyjxk | i, j, k ≥ 1 and k = i · j}.

5.4 Describe a Turing machine that computes the function whose value on input aibj is
ck, where k = i · j.

5.5 Describe a Turing machine that accepts the string (u, v) if u is a substring of v.

5.6 The element distinctness language, Led, consists of binary strings no two of which
are the same; that is, Led = {2w12 . . . 2wk2 | wi ∈ B∗ and wi %= wj , for i %= j}.
Describe a Turing machine that accepts this language.

EXTENSIONS TO THE STANDARD TURING MACHINE MODEL

5.7 Given a Turing machine with a double-ended tape, show how it can be simulated by
one with a single-ended tape.

5.8 Show equivalence between the standard Turing machine and the one-tape double-
headed Turing machine with two heads that can move independently on its one tape.

5.9 Show that a pushdown automaton with two pushdown tapes is equivalent to a Turing
machine.

5.10 Figure 5.14 shows a representation of a Turing machine with a two-dimensional tape
whose head can move one step vertically or horizontally. Give a complete definition of
a two-dimensional TM and sketch a proof that it can be simulated by a standard TM.

234 Chapter 5 Computability Models of Computation

Control
Unit

Figure 5.14 A schematic representation of a two-dimensional Turing machine.

5.11 By analogy with the construction given in Section 3.9.7, show that every deterministic
T-step multi-tape Turing machine computation can be simulated on a two-tape Turing
machine in O(T log T) steps.

PHRASE-STRUCTURE LANGUAGES AND TURING MACHINES

5.12 Give a detailed design of a Turing machine recognizing {anbncn |n ≥ 1}.

5.13 Use the method of Theorem 5.4.1 to construct a phrase-structure grammar generating
{anbncn |n ≥ 1}.

5.14 Design a Turing machine recognizing the language {02i | i ≥ 1}.

UNIVERSAL TURING MACHINES

5.15 Using the description of Section 5.5, give a complete description of a universal Turing
machine.

5.16 Construct a universal TM that has only two non-accepting states.

DECIDABLE PROBLEMS

5.17 Show that the following languages are decidable:

a) L = {ρ(M), w | M is a DFSM that accepts the input string w}
b) L = {ρ(M) | M is a DFSM and L(M) is infinite}

5.18 The symmetric difference between sets A and B is defined by (A − B) ∪ (B − A),
where A − B = A ∩ B. Use the symmetric difference to show that the following
language is decidable:

LEQ FSM = {ρ(M1), ρ(M2) | M1 and M2 are FSMs recognizing the same language}

c©John E Savage Problems 235

5.19 Show that the following language is decidable:

L = {ρ(G), w | ρ(G) encodes a CFG G that generates w}

Hint: How long is a derivation of w if G is in Chomsky normal form?

5.20 Show that the following language is decidable:

L = {ρ(G) | ρ(G) encodes a CFG G for which L(G) %= ∅}

5.21 Let L1, L2 ∈ P where P is the class of polynomial-time problems (see Definition 3.7.2).
Show that the following statements hold:

a) L1 ∪ L2 ∈ P

b) L1L2 ∈ P, where L1L2 is the concatenation of L1 and L2

c) L1 ∈ P

5.22 Let L1 ∈ P. Show that L∗
1 ∈ P.

Hint: Try using dynamic programming, the algorithmic concept illustrated by the
parsing algorithm of Theorem 4.11.2.

UNSOLVABLE PROBLEMS

5.23 Show that the problem of determining whether an arbitrary TM starting with a blank
tape will ever halt is unsolvable.

5.24 Show that the following language is undecidable:

LEQ = {ρ(M1), ρ(M2) | L(M1) = L(M2)}

5.25 Determine which of the following problems are solvable and unsolvable. Defend your
conclusions.

a) {ρ(M), w, p | M reaches state p on input w from its initial state}
b) {ρ(M), p | there is a configuration [u1 . . . umqv1 . . . vn] yielding a configuration

containing state p}
c) {ρ(M), a | M writes character a when started on the empty tape}
d) {ρ(M) | M writes a non-blank character when started on the empty tape}
e) {ρ(M), w | on input w M moves its head to the left}

FUNCTIONS COMPUTED BY TURING MACHINES

5.26 Define the integer division function fdiv : 2 #→ using primitive recursion.

5.27 Show that the function fremain : 2 #→ that provides the remainder of x after
division by y is a primitive recursive function.

5.28 Show that the factorial function x! is primitive recursive.

5.29 Write a RAM program (see Section 3.4.3) to realize the composition operation.

5.30 Write a RAM program (see Section 3.4.3) to realize the primitive recursion operation.

5.31 Write a RAM program (see Section 3.4.3) to realize the minimalization operation.

236 Chapter 5 Computability Models of Computation

Chapter Notes
Alan Turing introduced the Turing machine, gave an example of a universal machine and
demonstrated the unsolvability of the halting problem in [337]. A similar model was inde-
pendently developed by Post [254]. Chomsky [69] demonstrated the equivalence of phrase-
structure languages. Rice’s theorem is presented in [279].

Church gave a formal model of computation in [72]. The equivalence between the partial
recursive functions and the Turing computable functions was shown by Kleene [167].

For a more extensive introduction to Turing machines, see the books by Hopcroft and
Ullman [140] and Lewis and Papadimitriou [199].

