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Finite-State Machines and
Pushdown Automata

The finite-state machine (FSM) and the pushdown automaton (PDA) enjoy a special place in
computer science. The FSM has proven to be a very useful model for many practical tasks and
deserves to be among the tools of every practicing computer scientist. Many simple tasks, such
as interpreting the commands typed into a keyboard or running a calculator, can be modeled
by finite-state machines. The PDA is a model to which one appeals when writing compilers
because it captures the essential architectural features needed to parse context-free languages,
languages whose structure most closely resembles that of many programming languages.

In this chapter we examine the language recognition capability of FSMs and PDAs. We
show that FSMs recognize exactly the regular languages, languages defined by regular expres-
sions and generated by regular grammars. We also provide an algorithm to find a FSM that is
equivalent to a given FSM but has the fewest states.

We examine language recognition by PDAs and show that PDAs recognize exactly the
context-free languages, languages whose grammars satisfy less stringent requirements than reg-
ular grammars. Both regular and context-free grammar types are special cases of the phrase-
structure grammars that are shown in Chapter 5 to be the languages accepted by Turing ma-
chines.

It is desirable not only to classify languages by the architecture of machines that recog-
nize them but also to have tests to show that a language is not of a particular type. For this
reason we establish so-called pumping lemmas whose purpose is to show how strings in one
language can be elongated or “pumped up.” Pumping up may reveal that a language does not
fall into a presumed language category. We also develop other properties of languages that
provide mechanisms for distinguishing among language types. Because of the importance of
context-free languages, we examine how they are parsed, a key step in programming language
translation.
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154 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

4.1 Finite-State Machine Models
The deterministic finite-state machine (DFSM), introduced in Section 3.1, has a set of states,
including an initial state and one or more final states. At each unit of time a DFSM is given
a letter from its input alphabet. This causes the machine to move from its current state to a
potentially new state. While in a state, the DFSM produces a letter from its output alphabet.
Such a machine computes the function defined by the mapping from strings of input letters
to strings of output letters. DFSMs can also be used to accept strings. A string is accepted
by a DFSM if the last state entered by the machine on that input string is a final state. The
language recognized by a DFSM is the set of strings that it accepts.

Although there are languages that cannot be accepted by any machine with a finite number
of states, it is important to note that all realistic computational problems are finite in nature
and can be solved by FSMs. However, important opportunities to simplify computations may
be missed if we do not view them as requiring potentially infinite storage, such as that provided
by pushdown automata, machines that store data on a pushdown stack. (Pushdown automata
are formally introduced in Section 4.8.)

The nondeterministic finite-state machine (NFSM) was also introduced in Section 3.1.
The NFSM has the property that for a given state and input letter there may be several states
to which it could move. Also for some state and input letter there may be no possible move. We
say that an NFSM accepts a string if there is a sequence of next-state choices (see Section 3.1.5)
that can be made, when necessary, so that the string causes the NFSM to enter a final state.
The language accepted by such a machine is the set of strings it accepts.

Although nondeterminism is a useful tool in describing languages and computations, non-
deterministic computations are very expensive to simulate deterministically: the deterministic
simulation time can grow as an exponential function of the nondeterministic computation
time. We explore nondeterminism here to gain experience with it. This will be useful in
Chapter 8 when we classify languages by the ability of nondeterministic machines of infinite
storage capacity to accept them. However, as we shall see, nondeterminism offers no ad-
vantage for finite-state machines in that both DFSMs and NFSMs recognize the same set of
languages.

We now begin our formal treatment of these machine models. Since this chapter is con-
cerned only with language recognition, we give an abbreviated definition of the deterministic
FSM that ignores the output function. We also give a formal definition of the nondeterministic
finite-state machine that agrees with that given in Section 3.1.5. We recall that we interpreted
such a machine as a deterministic FSM that possesses a choice input through which a choice
agent specifies the state transition to take if more than one is possible.

DEFINITION 4.1.1 A deterministic finite-state machine (DFSM) M is a five-tuple M =
(Σ, Q, δ, s, F ) where Σ is the input alphabet, Q is the finite set of states, δ : Q × Σ �→ Q is
the next-state function, s is the initial state, and F is the set of final states. The DFSM M
accepts the input string w ∈ Σ∗ if the last state entered by M on application of w starting in
state s is a member of the set F . M recognizes the language L(M) consisting of all such strings.

A nondeterministic FSM (NFSM) is similarly defined except that the next-state function δ
is replaced by a next-set function δ : Q × Σ �→ 2Q that associates a set of states with each
state-input pair (q, a). The NFSM M accepts the string w ∈ Σ∗ if there are next-state choices,
whenever more than one exists, such that the last state entered under the input string w is a member
of F . M accepts the language L(M) consisting of all such strings.
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Figure 4.1 The deterministic finite-state machines Modd/even that accepts strings containing
an odd number of 0’s and an even number of 1’s.

Figure 4.1 shows a DFSM Modd/even with initial state q0. The final state is shown as
a shaded circle; that is, F = {q2}. Modd/even is in state q0 or q2 as long as the number
of 1’s in its input is even and is in state q1 or q3 as long as the number of 1’s in its input is
odd. Similarly, Modd/even is in state q0 or q1 as long as the number of 0’s in its input is even
and is in states q2 or q3 as long as the number of 0’s in its input is odd. Thus, Modd/even

recognizes the language of binary strings containing an odd number of 0’s and an even number
of 1’s.

When the next-set function δ for an NFSM has value δ(q, a) = ∅, the empty set, for
state-input pair (q, a), no transition is specified from state q on input letter a.

Figure 4.2 shows a simple NFSM ND with initial state q0 and final state set F = {q0,
q3, q5}. Nondeterministic transitions are possible from states q0, q3, and q5. In addition, no
transition is specified on input 0 from states q1 and q2 nor on input 1 from states q0, q3, q4,
or q5.
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Figure 4.2 The nondeterministic machine ND.
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4.2 Equivalence of DFSMs and NFSMs
Finite-state machines recognizing the same language are said to be equivalent. We now show
that the class of languages accepted by DFSMs and NFSMs is the same. That is, for each
NFSM there is an equivalent DFSM and vice versa. The proof has two symmetrical steps: a)
given an arbitrary DFSM D1 recognizing the language L(D1), we construct an NFSM N1

that accepts L(D1), and b) given an arbitrary NFSM N2 that accepts L(N2), we construct a
DFSM D2 that recognizes L(N2). The first half of this proof follows immediately from the
fact that a DFSM is itself an NFSM. The second half of the proof is a bit more difficult and
is stated below as a theorem. The method of proof is quite simple, however. We construct a
DFSM D2 that has one state for each set of states that the NFSM N2 can reach on some input
string and exhibit a next-state function for D2. We illustrate this approach with the NFSM
N2 = ND of Fig. 4.2.

Since the initial state of ND is q0, the initial state of D2 = Mequiv, the DFSM equivalent
to ND, is the set {q0}. In turn, because q0 has two successor states on input 0, namely q1 and
q2, we let {q1, q2} be the successor to {q0} in Mequiv on input 0, as shown in the following
table. Since q0 has no successor on input 1, the successor to {q0} on input 1 is the empty set ∅.
Building in this fashion, we find that the successor to {q1, q2} on input 1 is {q3, q4} whereas
its successor on input 0 is ∅. The reader can complete the table shown below. Here qequiv is
the name of a state of the DFSM Mequiv.

qequiv a δMequiv(qequiv, a)

{q0} 0 {q1, q2}
{q0} 1 ∅
{q1, q2} 0 ∅
{q1, q2} 1 {q3, q4}
{q3, q4} 0 {q1, q2, q5}
{q3, q4} 1 ∅
{q1, q2, q5} 0 {q1, q2}
{q1, q2, q5} 1 {q3, q4}

qequiv q

{q0} a
{q1, q2} b
{q3, q4} c
{q1, q2, q5} d
∅ qR

In the second table above, we provide a new label for each state qequiv of Mequiv. In
Fig. 4.3 we use these new labels to exhibit the DFSM Mequiv equivalent to the NFSM ND of
Fig. 4.2. A final state of Mequiv is any set containing a final state of ND because a string takes
Mequiv to such a set if and only if it can take ND to one of its final states. We now show that
this method of constructing a DFSM from an NFSM always works.

THEOREM 4.2.1 Let L be a language accepted by a nondeterministic finite-state machine M1.
There exists a deterministic finite-state machine M2 that recognizes L.

Proof Let M1 = (Σ, Q1, δ1, s1, F1) be an NFSM that accepts the language L. We design
a DFSM M2 = (Σ, Q2, δ2, s2, F2) that also recognizes L. M1 and M2 have identical input
alphabets, Σ. The states of M2 are associated with subsets of the states of Q1, which is
denoted by Q2 ⊆ 2Q1 , where 2Q1 is the power set of Q1 containing all the subsets of Q1,
including the empty set. We let the initial state s2 of M2 be associated with the set {s1}
containing the initial state of M1. A state of M2 is a set of states that M1 can reach on a
sequence of inputs. A final state of M2 is a subset of Q1 that contains a final state of M1.
For example, if q5 ∈ F1, then {q2, q5} ∈ F2.
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Figure 4.3 The DFSM Mequiv equivalent to the NFSM ND.

We first give an inductive definition of the states of M2. Let Q
(k)
2 denote the sets of states

of M1 that can be reached from s1 on input strings containing k or fewer letters. In the

example given above, Q
(1)
2 = {{q0}, {q1, q2}, qR} and Q

(3)
2 = {{q0}, {q1, q2}, {q3, q4},

{q1, q2, q5}, qR}. To construct Q
(k+1)
2 from Q

(k)
2 , we form the subset of Q1 that can be

reached on each input letter from a subset in Q
(k)
2 , as illustrated above. If this is a new set,

it is added to Q
(k)
2 to form Q

(k+1)
2 . When Q

(k)
2 and Q

(k+1)
2 are the same, we terminate

this process since no new subsets of Q1 can be reached from s1. This process eventually
terminates because Q2 has at most 2|Q1| elements. It terminates in at most 2|Q1| − 1 steps
because starting from the initial set {q0} at least one new subset must be added at each step.

The next-state function δ2 of M2 is defined as follows: for each state q of M2 (a subset
of Q1), the value of δ2(q, a) for input letter a is the state of M2 (subset of Q1) reached from

q on input a. As the sets Q
(1)
2 , . . . , Q(m)

2 are constructed, m ≤ 2|Q1| − 1, we construct a
table for δ2.

We now show by induction on the length of an input string z that if z can take M1 to
a state in the set S ⊆ Q1, then it takes M2 to its state associated with S. It follows that if S
contains a final state of M1, then z is accepted by both M1 and M2.

The basis for the inductive hypothesis is the case of the empty input letter. In this case,
s1 is reached by M1 if and only if {s1} is reached by M2. The inductive hypothesis is that
if w of length n can take M1 to a state in the set S, then it takes M2 to its state associated
with S. We assume the hypothesis is true on inputs of length n and show that it remains
true on inputs of length n + 1. Let z = wa be an input string of length n + 1. To show
that z can take M1 to a state in S′ if and only if it takes M2 to the state associated with S′,
observe that by the inductive hypothesis there exists a set S ⊆ Q1 such that w can take M1

to a state in S if and only if it takes M2 to the state associated with S. By the definition
of δ2, the input letter a takes the states of M1 in S into states of M1 in S′ if and only if a
takes the state of M2 associated with S to the state associated with S′. It follows that the
inductive hypothesis holds.

Up to this point we have shown equivalence between deterministic and nondeterministic
FSMs. Another equivalence question arises in this context: It is, “Given an FSM, is there an
equivalent FSM that has a smaller number of states?” The determination of an equivalent FSM



158 Chapter 4 Finite-State Machines and Pushdown Automata Models of Computation

with the smallest number of states is called the state minimization problem and is explored
in Section 4.7.

4.3 Regular Expressions
In this section we introduce regular expressions, algebraic expressions over sets of individual
letters that describe the class of languages recognized by finite-state machines, as shown in the
next section.

Regular expressions are formed through the concatenation, union, and Kleene closure of
sets of strings. Given two sets of strings L1 and L2, their concatenation L1 · L2 is the set
{uv | u ∈ L1 and v ∈ L2}; that is, the set of strings consisting of an arbitrary string of L1

followed by an arbitrary string of L2. (We often omit the concatenation operator ·, writing
variables one after the other instead.) The union of L1 and L2, denoted L1 ∪ L2, is the set
of strings that are in L1 or L2 or both. The Kleene closure of a set L of strings, denoted L∗

(also called the Kleene star), is defined in terms of the i-fold concatenation of L with itself,
namely, Li = L · Li−1, where L0 = {ε}, the set containing the empty string:

L∗ =
∞⋃
i=0

Li

Thus, L∗ is the union of strings formed by concatenating zero or more words of L. Finally, we
define the positive closure of L to be the union of all i-fold products except for the zeroth,
that is,

L+ =
∞⋃
i=1

Li

The positive closure is a useful shorthand in regular expressions.
An example is helpful. Let L1 = {01, 11} and L2 = {0, aba}; then L1L2 = {010, 01aba,

110, 11aba}, L1 ∪ L2 = {0, 01, 11, aba}, and

L∗
2 = {0, aba}∗ = {ε, 0, aba, 00, 0aba, aba0, abaaba, . . .}

Note that the definition given earlier for Σ∗, namely, the set of strings over the finite alphabet
Σ, coincides with this new definition of the Kleene closure. We are now prepared to define
regular expressions.

DEFINITION 4.3.1 Regular expressions over the finite alphabet Σ and the languages they de-
scribe are defined recursively as follows:

1. ∅ is a regular expression denoting the empty set.

2. ε is a regular expression denoting the set {ε}.

3. For each letter a ∈ Σ, a is a regular expression denoting the set {a} containing a.

4. If r and s are regular expressions denoting the languages R and S, then (rs), (r + s), and
(r∗) are regular expressions denoting the languages R · S, R ∪ S, and R∗, respectively.

The languages denoted by regular expressions are called regular languages. (They are also often
called regular sets.)
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Figure 4.4 A finite-state machine computing the EXCLUSIVE OR of its inputs.

Some examples of regular expressions will clarify the definitions. The regular expression
(0 + 1)∗ denotes the set of all strings over the alphabet {0, 1}. The expression (0∗)(1)
denotes the strings containing zero or more 0’s that end with a single 1. The expression
((1)(0∗)(1) + 0)∗ denotes strings containing an even number of 1’s. Thus, the expression
((0∗)(1))((1)(0∗)(1) + 0)∗ denotes strings containing an odd number of 1’s. This is exactly
the class of strings recognized by the simple DFSM in Fig. 4.4. (So far we have set in boldface
all regular expressions denoting sets containing letters. Since context will distinguish between
a set containing a letter and the letter itself, we drop the boldface notation at this point.)

Some parentheses in regular expressions can be omitted if we give highest precedence to
Kleene closure, next highest precedence to concatenation, and lowest precedence to union. For
example, we can write ((0∗)(1))((1)(0∗)(1) + 0)∗ as 0∗1(10∗1 + 0)∗.

Because regular expressions denote languages, certain combinations of union, concatena-
tion, and Kleene closure operations on regular expressions can be rewritten as other combina-
tions of operations. A regular expression will be treated as identical to the language it denotes.
Two regular expressions are equivalent if they denote the same language. We now state
properties of regular expressions, leaving their proof to the reader.

THEOREM 4.3.1 Let ∅ and ε be the regular expressions denoting the empty set and the set contain-
ing the empty string and let r, s, and t be arbitrary regular expressions. Then the rules shown in
Fig. 4.5 hold.

We illustrate these rules with the following example. Let a = 0∗1·b+0∗, where b = c·10+

and c = (0 + 10+1)∗. Using rule (16) of Fig. 4.5, we rewrite c as follows:

c = (0 + 10+1)∗ = (0∗10+1)∗0∗

Then using rule (15) with r = 0∗10+ and s = 1, we write b as follows:

b = (0∗10+1)∗0∗10+ = (rs)∗r = r(sr)∗ = 0∗10+(10∗10+)∗

It follows that a satisfies

a = 0∗1 · b + 0∗

= 0∗10∗10+(10∗10+)∗ + 0∗

= 0∗(10∗10+)+ + 0∗

= 0∗((10∗10+)+ + ε)
= 0∗(10∗10+)∗
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(1) r∅ = ∅r = ∅
(2) rε = εr = r

(3) r + ∅ = ∅ + r = r

(4) r + r = r

(5) r + s = s + r

(6) r(s + t) = rs + rt

(7) (r + s)t = rt + st

(8) r(st) = (rs)t
(9) ∅∗ = ε

(10) ε∗ = ε

(11) (ε + r)+ = r∗

(12) (ε + r)∗ = r∗

(13) r∗(ε + r) = (ε + r)r∗ = r∗

(14) r∗s + s = r∗s
(15) r(sr)∗ = (rs)∗r
(16) (r + s)∗ = (r∗s)∗r∗ = (s∗r)∗s∗

Figure 4.5 Rules that apply to regular expressions.

where we have simplified the expressions using the definition of the positive closure, namely
r(r∗) = r+ in the second equation and rules (6), (5), and (12) in the last three equations.
Other examples of the use of the identities can be found in Section 4.4.

4.4 Regular Expressions and FSMs
Regular languages are exactly the languages recognized by finite-state machines, as we now
show. Our two-part proof begins by showing (Section 4.4.1) that every regular language can
be accepted by a nondeterministic finite-state machine. This is followed in Section 4.4.2 by
a proof that the language recognized by an arbitrary deterministic finite-state machine can be
described by a regular expression. Since by Theorem 4.2.1 the language recognition power of
DFSMs and NFSMs are the same, the desired conclusion follows.

4.4.1 Recognition of Regular Expressions by FSMs
THEOREM 4.4.1 Given a regular expression r over the set Σ, there is a nondeterministic finite-state
machine that accepts the language denoted by r.

Proof We show by induction on the size of a regular expression r (the number of its opera-
tors) that there is an NFSM that accepts the language described by r.

BASIS: If no operators are used, the regular expression is either ε, ∅, or a for some a ∈ Σ.
The finite-state machines shown in Fig. 4.6 recognize these three languages.
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Figure 4.6 Finite-state machines recognizing the regular expressions ε, ∅, and a, respectively.
In b) an output state is shown even though it cannot be reached.

INDUCTION: Assume that the hypothesis holds for all regular expressions r with at most k
operators. We show that it holds for k + 1 operators. Since k is arbitrary, it holds for all k.
The outermost operator (the k + 1st) is either concatenation, union, or Kleene closure. We
argue each case separately.

CASE 1: Let r = (r1 · r2). M1 and M2 are the NFSMs that accept r1 and r2, respectively.
By the inductive hypothesis, such machines exist. Without loss of generality, assume that the
states of these machines are distinct and let them have initial states s1 and s2, respectively.
As suggested in Fig. 4.7, create a machine M that accepts r as follows: for each input letter
σ, final state f of M1, and state q of M2 reached by an edge from s2 labeled σ, add an edge
with the same label σ from f to q. If s2 is not a final state of M2, remove the final state
designations from states of M1.

It follows that every string accepted by M either terminates on a final state of M1 (when
M2 accepts the empty string) or exits a final state of M1 (never to return to a state of M1),
enters a state of M2 reachable on one input letter from the initial state of M2, and terminates
on a final state of M2. Thus, M accepts exactly the strings described by r.

CASE 2: Let r = (r1 + r2). Let M1 and M2 be NFSMs with distinct sets of states and let
initial states s1 and s2 accept r1 and r2, respectively. By the inductive hypothesis, M1 and
M2 exist. As suggested in Fig. 4.8, create a machine M that accepts r as follows: a) add a
new initial state s0; b) for each input letter σ and state q of M1 or M2 reached by an edge

f1

f2

s1 M1 M2 f3

q2

q1

y

x

x z

z

x

y
s2 y

z

Figure 4.7 A machine M recognizing r1 · r2. M1 and M2 are the NFSMs that accept r1 and
r2, respectively. An edge with label a is added between each final state of M1 and each state of M2

reached on input a from its start state, s2. The final states of M2 are final states of M , as are the
final states of M1 if s2 is a final of M2. It follows that this machine accepts the strings beginning
with a string in r1 followed by one in r2.
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Figure 4.8 A machine M accepting r1 + r2. M1 and M2 are the NFSMs that accept r1 and
r2, respectively. The new start state s0 has an edge labeled a for each edge with this label from the
initial state of M1 or M2. The final states of M are the final states of M1 and M2 as well as s0 if
either s1 or s2 is a final state. After the first input choice, the new machine acts like either M1 or
M2. Therefore, it accepts strings denoted by r1 + r2.

from s1 or s2 labeled σ, add an edge with the same label from s0 to q. If either s1 or s2 is a
final state, make s0 a final state.

It follows that if either M1 or M2 accepts the empty string, so does M . On the first
non-empty input letter M enters and remains in either the states of M1 or those of M2. It
follows that it accepts either the strings accepted by M1 or those accepted by M2 (or both),
that is, the union of r1 and r2.

CASE 3: Let r = (r1)∗. Let M1 be an NFSM with initial state s1 that accepts r1, which,
by the inductive hypothesis, exists. Create a new machine M , as suggested in Fig. 4.9, as
follows: a) add a new initial state s0; b) for each input letter σ and state q reached on σ from
s1, add an edge with label σ between s0 and state q with label σ, as in Case 2; c) add such
edges from each final state to these same states. Make the new initial state a final state and
remove the initial-state designation from s1.

It follows that M accepts the empty string, as it should since r = (r1)∗ contains the
empty string. Since the edges leaving each final state are those directed away from the initial
state s0, it follows that M accepts strings that are the concatenation of strings in r1, as it
should.

We now illustrate this construction of an NFSM from a regular expression. Consider the
regular expression r = 10∗ + 0, which we decompose as r = (r1r2 + r3) where r1 = 1,
r2 = (r4)∗, r3 = 0, and r4 = 0. Shown in Fig. 4.10(a) is a NFSM accepting the languages
denoted by the regular expressions r3 and r4, and in (b) is an NFSM accepting r1. Figure 4.11
shows an NFSM accepting the closure of r4 obtained by adding a new initial state (which is
also made a final state) from which is directed a copy of the edge directed away from the initial
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Figure 4.9 A machine M accepts r∗1 . M1 accepts r1. Make s0 the initial state of M . For
each input letter a, add an edge labeled a from s0 and each final of M1 to each state reached on
input a from s1, the initial state of M1. The final states of M are s0 and the final states of M1.
Thus, M accepts ε and all states reached by the concatenation of strings accepted by M1; that is,
it realizes the closure r∗1 .
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Figure 4.10 Nondeterministic machines accepting 0 and 1.
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Figure 4.11 An NFSM accepting the Kleene closure of {0}.
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Figure 4.12 A nondeterministic machine accepting 10∗.
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Figure 4.13 A nondeterministic machine accepting 10∗ + 0.

state of M0, the machine accepting r4. (The state s1 is marked as inaccessible.) Figure 4.12
(page 163) shows an NFSM accepting r1r2 constructed by concatenating the machine M1

accepting r1 with M2 accepting r2. (s1 is inaccessible.) Figure 4.13 gives an NFSM accepting
the language denoted by r1r2+r3, designed by forming the union of machines for r1r2 and r3.
(States s2 and s3 are inaccessible.) Figure 4.14 shows a DFSM recognizing the same language
as that accepted by the machine in Fig. 4.13. Here we have added a reject state qR to which all
states move on input letters for which no state transition is defined.

4.4.2 Regular Expressions Describing FSM Languages
We now give the second part of the proof of equivalence of FSMs and regular expressions. We
show that every language recognized by a DFSM can be described by a regular expression. We
illustrate the proof using the DFSM of Fig. 4.3, which is the DFSM given in Fig. 4.15 except
for a relabeling of states.

THEOREM 4.4.2 If the language L is recognized by a DFSM M = (Σ, Q, δ, s, F ), then L can
be represented by a regular expression.

0
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0Start
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qR

q1

0, 1

1

0, 1

1
0

Figure 4.14 A deterministic machine accepting 10∗ + 0.
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Figure 4.15 The DFSM of Figure 4.3 with a relabeling of states.

Proof Let Q = {q1, q2, . . . , qn} and F = {qj1 , qj2 , . . . , qjp
} be the final states. The

proof idea is the following. For every pair of states (qi, qj) of M we construct a regular

expression r
(0)
i,j denoting the set R

(0)
i,j containing input letters that take M from qi to qj

without passing through any other states. If i = j, R
(0)
i,j contains the empty letter ε because

M can move from qi to qi without reading an input letter. (These definitions are illustrated

in the table T (0) of Fig. 4.16.) For k = 1, 2, . . . , m we proceed to define the set R
(k)
i,j of

strings that take M from qi to qj without passing through any state except possibly one in

Q(k) = {q1, q2, . . . , qk}. We also associate a regular expression r
(k)
i,j with the set R

(k)
i,j . Since

Q(n) = Q, the input strings that carry M from s = qt, the initial state, to a final state in F
are the strings accepted by M . They can be described by the following regular expression:

r
(n)
t,j1

+ r
(n)
t,j2

+ · · ·+ r
(n)
t,jp

This method of proof provides a dynamic programming algorithm to construct a reg-
ular expression for L.

T (0) = {r(0)
i,j }

i \ j 1 2 3 4 5

1 ε 0 1 ∅ ∅
2 ∅ ε 0 1 ∅
3 ∅ ∅ ε + 0 + 1 ∅ ∅
4 ∅ ∅ 1 ε 0

5 ∅ 0 ∅ 1 ε

Figure 4.16 The table T (0) containing the regular expressions {r(0)
i,j } associated with the DFSM

in shown in Fig. 4.15.
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R
(0)
i,j is formally defined below.

R
(0)
i,j =

{
{a | δ(qi, a) = qj} if i �= j

{a | δ(qi, a) = qj} ∪ {ε} if i = j

Since R
(k)
i,j is defined as the set of strings that take M from qi to qj without passing through

states outside of Q(k), it can be recursively defined as the strings that take M from qi to
qj without passing through states outside of Q(k−1) plus those that take M from qi to qk

without passing through states outside of Q(k−1), followed by strings that take M from
qk to qk zero or more times without passing through states outside Q(k−1), followed by
strings that take M from qk to qj without passing through states outside of Q(k−1). This is
represented by the formula below and suggested in Fig. 4.17:

R
(k)
i,j = R

(k−1)
i,j ∪R

(k−1)
i,k ·

(
R

(k−1)
k,k

)∗
·R(k−1)

k,j

It follows by induction on k that R
(k)
i,j correctly describes the strings that take M from qi to

qj without passing through states of index higher than k.

We now exhibit the set {r(k)
i,j } of regular expressions that describe the sets {R(k)

i,j | 1 ≤
i, j, k ≤ m} and establish the correspondence by induction. If the set R

(0)
i,j contains the

letters x1, x2, . . . , xl (which might include the empty letter ε), then we let r
(0)
i,j = x1 +x2 +

· · ·+xl. Assume that r
(k−1)
i,j correctly describes R

(k−1)
i,j . It follows that the regular expression

r
(k)
i,j = r

(k−1)
i,j + r

(k−1)
i,k

(
r
(k−1)
k,k

)∗
r
(k−1)
k,j (4.1)

correctly describes R
(k)
i,j . This concludes the proof.

The dynamic programming algorithm given in the above proof is illustrated by the DFSM
in Fig. 4.15. Because this algorithm can produce complex regular expressions even for small
DFSMs, we display almost all of its steps, stopping when it is obvious which results are needed
for the regular expression that describes the strings recognized by the DFSM. For 1 ≤ k ≤ 6,

R
(k−1)
k,k

R
(k−1)
i,j

R
(k−1)
k,jR

(k−1)
i,k

Figure 4.17 A recursive decomposition of the set R
(k)
i,j of strings that cause an FSM to move

from state qi to qj without passing through states ql for l > k.
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let T (k) denote the table of values of {r(k)
i,j | 1 ≤ i, j ≤ 6}. Table T (0) in Fig. 4.16 describes

the next-state function of this DFSM. The remaining tables are constructed by invoking the

definition of r
(k)
i,j in (4.1). Entries in table T (1) are formed using the following facts:

r
(1)
i,j = r

(0)
i,j + r

(0)
i,1

(
r
(0)
1,1

)∗
r
(0)
1,j ;

(
r
(0)
1,1

)∗
= ε∗ = ε; r

(0)
i,1 = ∅ for i ≥ 2

It follows that r
(1)
i,j = r

(0)
i,j or that T (1) is identical to T (0). Invoking the identity r

(2)
i,j =

r
(1)
i,j + r

(1)
i,2

(
r
(1)
2,2

)∗
r
(1)
2,j and using

(
r
(1)
2,2

)∗
= ε, we construct the table T (2) below:

T (2) = {r(2)
i,j }

i \ j 1 2 3 4 5

1 ε 0 1 + 00 01 ∅
2 ∅ ε 0 1 ∅
3 ∅ ∅ ε + 0 + 1 ∅ ∅
4 ∅ ∅ 1 ε 0

5 ∅ 0 00 1 + 01 ε

The fourth table T (3) is shown below. It is constructed using the identity r
(3)
i,j = r

(2)
i,j +

r
(2)
i,3

(
r
(2)
3,3

)∗
r
(2)
3,j and the fact that

(
r
(2)
3,3

)∗
= (0 + 1)∗.

T (3) = {r(3)
i,j }

i \ j 1 2 3 4 5

1 ε 0 (1 + 00)(0 + 1)∗ 01 ∅
2 ∅ ε 0(0 + 1)∗ 1 ∅
3 ∅ ∅ (0 + 1)∗ ∅ ∅
4 ∅ ∅ 1(0 + 1)∗ ε 0

5 ∅ 0 00(0 + 1)∗ 1 + 01 ε

The fifth table T (4) is shown below. It is constructed using the identity r
(4)
i,j = r

(3)
i,j +

r
(3)
i,4

(
r
(3)
4,4

)∗
r
(3)
4,j and the fact that

(
r
(3)
4,4

)∗
= ε.

T (4) = {r(4)
i,j }

i \ j 1 2 3 4 5

1 ε 0 (1 + 00 + 011)(0 + 1)∗ 01 010

2 ∅ ε (0 + 11)(0 + 1)∗ 1 10

3 ∅ ∅ (0 + 1)∗ ∅ ∅
4 ∅ ∅ 1(0 + 1)∗ ε 0

5 ∅ 0 (00 + 11 + 011)(0 + 1)∗ 1 + 01 ε + 10 + 010
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Instead of building the sixth table, T (5), we observe that the regular expression that is

needed is r = r
(5)
1,1 + r

(5)
1,4 + r

(5)
1,5 . Since r

(5)
i,j = r

(4)
i,j + r

(4)
i,5

(
r
(4)
5,5

)∗
r
(4)
5,j and

(
r
(4)
5,5

)∗
=

(10 + 010)∗, we have the following expressions for r
(5)
1,1 , r

(5)
1,4 , and r

(5)
1,5 :

r
(5)
1,1 = ε

r
(5)
1,4 = 01 + (010)(10 + 010)∗(1 + 01)

r
(5)
1,5 = 010 + (010)(10 + 010)∗(ε + 10 + 010) = (010)(10 + 010)∗

Thus, the DFSM recognizes the language denoted by the regular expression r = ε + 01 +
(010)(10+010)∗(ε+1+01). It can be shown that this expression denotes the same language
as does ε + 01 + (01)(01 + 001)∗(ε + 0) = (01 + 010)∗. (See Problem 4.12.)

4.4.3 grep—Searching for Strings in Files
Many operating systems provide a command to find strings in files. For example, the Unix
grep command prints all lines of a file containing a string specified by a regular expression.
grep is invoked as follows:

grep regular-expression file name

Thus, the command grep ’o+’ file name returns each line of the file file name that
contains o+ somewhere in the line. grep is typically implemented with a nondeterministic
algorithm whose behavior can be understood by considering the construction of the preceding
section.

In Section 4.4.1 we describe a procedure to construct NFSMs accepting strings denoted
by regular expressions. Each such machine starts in its initial state before processing an input
string. Since grep finds lines containing a string that starts anywhere in the lines, these NFSMs
have to be modified to implement grep. The modifications required for this purpose are
straightforward and left as an exercise for the reader. (See Problem 4.19.)

4.5 The Pumping Lemma for FSMs
It is not surprising that some languages are not regular. In this section we provide machinery
to show this. It is given in the form of the pumping lemma, which demonstrates that if a
regular language contains long strings, it must contain an infinite set of strings of a particular
form. We show the existence of languages that do not contain strings of this form, thereby
demonstrating that they are not regular.

The pigeonhole principle is used to prove the pumping lemma. It states that if there are
n pigeonholes and n+1 pigeons, each of which occupies a hole, then at least one hole has two
pigeons. This principle, whose proof is obvious (see Section 1.3), enjoys a hallowed place in
combinatorial mathematics.

The pigeonhole principle is applied as follows. We first note that if a regular language L
is infinite, it contains a string w with at least as many letters as there are states in a DFSM M
recognizing L. Including the initial state, it follows that M visits at least one more state while
processing w than it has different states. Thus, at least one state is visited at least twice. The
substring of w that causes M to move from this state back to itself can be repeated zero or
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more times to give other strings in the language. We use the notation un to mean the string
repeated n times and let u0 = ε.

LEMMA 4.5.1 Let L be a regular language over the alphabet Σ recognized by a DFSM with m
states. If w ∈ L and |w| ≥ m, then there are strings r, s, and t with |s| ≥ 1 and |rs| ≤ m
such that w = rst and for all integers n ≥ 0, rsnt is also in L.

Proof Let L be recognized by the DFSM M with m states. Let k = |w| ≥ m be the length
of w in L. Let q0, q1, q2, . . . , qk denote the initial and k successive states that M enters after
receiving each of the letters in w. By the pigeonhole principle, some state q′ in the sequence
q0, . . . , qm (m ≤ k) is repeated. Let qi = qj = q′ for i < j. Let r = w1 . . . wi be the
string that takes M from q0 to qi = q′ (this string may be empty) and let s = wi+1 . . . wj

be the string that takes M from qi = q′ to qj = q′ (this string is non-empty). It follows
that |rs| ≤ m. Finally, let t = wj+1 . . . wk be the string that takes M from qj to qk. Since
s takes M from state q′ to state q′, the final state entered by M is the same whether s is
deleted or repeated one or more times. (See Fig. 4.18.) It follows that rsnt is in L for all
n ≥ 0.

As an application of the pumping lemma, consider the language L = {0p1p | p ≥ 1}.
We show that it is not regular. Assume it is regular and is recognized by a DFSM with m
states. We show that a contradiction results. Since L is infinite, it contains a string w of length
k = 2p ≥ 2m, that is, with p ≥ m. By Lemma 4.5.1 L also contains rsnt, n ≥ 0, where
w = rst and |rs| ≤ m ≤ p. That is, s = 0d where d ≤ p. Since rsnt = 0p+(n−1)d1p for
n ≥ 0 and this is not of the form 0p1p for n = 0 and n ≥ 2, the language is not regular.

The pumping lemma allows us to derive specific conditions under which a language is
finite or infinite, as we now show.

LEMMA 4.5.2 Let L be a regular language recognized by a DFSM with m states. L is non-empty
if and only if it contains a string of length less than m. It is infinite if and only if it contains a string
of length at least m and at most 2m− 1.

Proof If L contains a string of length less than m, it is not empty. If it is not empty, let w
be a shortest string in L. This string must have length at most m − 1 or we can apply the
pumping lemma to it and find another string of smaller length that is also in L. But this
would contradict the assumption that w is a shortest string in L. Thus, L contains a string
of length at most m − 1.

If L contains a string w of length m ≤ |w| ≤ 2m − 1, as shown in the proof of the
pumping lemma, w can be “pumped up” to produce an infinite set of strings. Suppose now
that L is infinite. Either it contains a string w of length m ≤ |w| ≤ 2m− 1 or it does not.

Start
q0 q′ qf

r t

s

Figure 4.18 Diagram illustrating the pumping lemma.
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In the first case, we are done. In the second case, |w| ≥ 2m and we apply the pumping
lemma to it to find another shorter string that is also in L, contradicting the hypothesis that
it was the shortest string of length greater than or equal to 2m.

4.6 Properties of Regular Languages
Section 4.4 established the equivalence of regular languages (recognized by finite-state ma-
chines) and the languages denoted by regular expressions. We now present properties satisfied
by regular languages. We say that a class of languages is closed under an operation if ap-
plying that operation to a language (or languages) in the class produces another language in
the class. For example, as shown below, the union of two regular languages is another regular
language. Similarly, the Kleene closure applied to a regular language returns another regular
language.

Given a language L over an alphabet Σ, the complement of L is the set L = Σ∗ − L,
the strings that are in Σ∗ but not in L. (This is also called the difference between Σ∗ and L.)
The intersection of two languages L1 and L2, denoted L1 ∩ L2, is the set of strings that are
in both languages.

THEOREM 4.6.1 The class of regular languages is closed under the following operations:
• concatenation
• union
• Kleene closure
• complementation
• intersection

Proof In Section 4.4 we showed that the languages denoted by regular expressions are ex-
actly the languages recognized by finite-state machines (deterministic or nondeterministic).
Since regular expressions are defined in terms of concatenation, union, and Kleene closure,
they are closed under each of these operations.

The proof of closure of regular languages under complementation is straightforward. If
L is regular and has an associated FSM M that recognizes it, make all final states of M non-
final and all non-final states final. This new machine then recognizes exactly the complement
of L. Thus, L is also regular.

The proof of closure of regular languages under intersection follows by noting that if L1

and L2 are regular languages, then

L1 ∩ L2 = L1 ∪ L2

that is, the intersection of two sets can be obtained by complementing the union of their
complements. Since each of L1 and L2 is regular, as is their union, it follows that L1 ∪ L2

is regular. (See Fig. 4.19(a).) Finally, the complement of a regular set is regular.

When we come to study Turing machines in Chapter 5, we will show that there are well-
defined languages that have no machine to recognize them, even if the machine has an infinite
amount of storage available. Thus, it is interesting to ask if there are algorithms that solve
certain decision problems about regular languages in a finite number of steps. (Machines that
halt on all input are said to implement algorithms.) As shown above, there are algorithms
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Figure 4.19 (a) The intersection L1 ∩ L2 of two sets L1 and L2 can be obtained by taking the

complement L1 ∪ L2 of the union L1 ∪L2 of their complements. (b) If L(M1) ⊆ L(M2), then
L(M1) ∩ L(M2) = ∅.

that can recognize the concatenation, union and Kleene closure of regular languages. We now
show that algorithms exist for a number of decision problems concerning finite-state machines.

THEOREM 4.6.2 There are algorithms for each of the following decision problems:
a) For a finite-state machine M and a string w, determine if w ∈ L(M).
b) For a finite-state machine M , determine if L(M) = ∅.
c) For a finite-state machine M , determine if L(M) = Σ∗.
d) For finite-state machines M1 and M2, determine if L(M1) ⊆ L(M2).
e) For finite-state machines M1 and M2, determine if L(M1) = L(M2).

Proof To answer (a) it suffices to supply w to a deterministic finite-state machine equiva-
lent to M and observe the final state after it has processed all letters in w. The number of
steps executed by this machine is the length of w. Question (b) is answered in Lemma 4.5.2.
We need only determine if the language contains strings of length less than m, where m is
the number of states of M . This can be done by trying all inputs of length less than m.
The answer to question (c) is the same as the answer to “Is L(M) = ∅?” The answer to
question (d) is the same as the answer to “Is L(M1) ∩ L(M2) = ∅?” (See Fig. 4.19(b).)
Since FSMs that recognize the complement and intersection of regular languages can be
constructed in a finite number of steps (see the proof of Theorem 4.6.1), we can use the
procedure for (b) to answer the question. Finally, the answer to question (e) is “yes” if and
only if L(M1) ⊆ L(M2) and L(M2) ⊆ L(M1).

4.7 State Minimization*
Given a finite-state machine M , it is often useful to have a potentially different DFSM Mmin

with the smallest number of states (a minimal-state machine) that recognizes the same language
L(M). In this section we develop a procedure to find such a machine recognizing a regular
language L. As a step in this direction, we define a natural equivalence relation RL for each lan-
guage L and show that L is regular if and only if RL has a finite number of equivalence classes.

4.7.1 Equivalence Relations on Languages and States
The relation RL is used to define a machine ML. When L is regular, we show that ML is a
minimal-state DFSM. We also give an explicit procedure to construct a minimal-state DFSM
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recognizing a regular language L. The approach is the following: a) given a regular expression,
an NFSM is constructed (Theorem 4.4.1); b) an equivalent DFSM is then produced (Theo-
rem 4.2.1); c) equivalent states of this DFSM are discovered and coalesced, thereby producing
the minimal machine. We begin our treatment with a discussion of equivalence relations.

DEFINITION 4.7.1 An equivalence relation R on a set A is a partition of the elements of A into
disjoint subsets called equivalence classes. If two elements a and b are in the same equivalence
class under relation R, we write aRb. If a is an element of an equivalence class, we represent its
equivalence class by [a]. An equivalence relation is represented by its equivalence classes.

An example of equivalence relation on the set A = {0, 1, 2, 3} is the set of equivalence
classes {{0, 2}, {1, 3}}. Then, [0] and [2] denote the same equivalence class, namely {0, 2},
whereas [1] and [2] denote different equivalence classes.

Equivalence relations can be defined on any set, including the set of strings over a finite
alphabet (a language). For example, let the partition {0∗, 0(0∗10∗)+, 1(0 + 1)∗} of the
set (0 + 1)∗ denote the equivalence relation R. The equivalence classes consist of strings
containing zero or more 0’s, strings starting with 0 and containing at least one 1, and strings
beginning with 1. It follows that 00R000 and 1001R11 but not that 10R01.

Additional conditions can be put on equivalence relations on languages. An important
restriction is that an equivalence relation be right-invariant (with respect to concatenation).

DEFINITION 4.7.2 An equivalence relation R over the alphabet Σ is right-invariant (with respect
to concatenation) if for all u and v in Σ∗, uRv implies uzRvz for all z ∈ Σ∗.

For example, let R = {(10∗1 + 0)∗, 0∗1(10∗1 + 0)∗}. That is, R consists of two equiv-
alence classes, the set containing strings with an even number of 1’s and the set containing
strings with an odd number of 1’s. R is right-invariant because if uRv; that is, if the numbers
of 1’s in u and v are both even or both odd, then the same is true of uz and vz for each
z ∈ Σ∗, that is, uzRvz.

To each language L, whether regular or not, we associate the natural equivalence relation
RL defined below. Problem 4.30 shows that for some languages RL has an unbounded number
of equivalence classes.

DEFINITION 4.7.3 Given a language L over Σ, the equivalence relation RL is defined as follows:
strings u, v ∈ Σ∗ are equivalent, that is, uRLv, if and only if for each z ∈ Σ∗, either both uz
and vz are in L or both are not in L.

The equivalence relation R = {(10∗1+0)∗, 0∗1(10∗1+0)∗} given above is the equivalence
relation RL for both the language L = (10∗1 + 0)∗ and the language L = 0∗1(10∗1 + 0)∗.

A natural right-invariant equivalence relation on strings can also be associated with each
DFSM, as shown below. This relation defines two strings as equivalent if they carry the ma-
chine from its initial state to the same state. Thus, for each state there is an equivalence class
of strings that take the machine to that state. For this purpose we extend the state transition
function δ to strings a ∈ Σ∗ recursively by δ(q, ε) = q and δ(q, σa) = δ(δ(q, σ), a) for
σ ∈ Σ.

DEFINITION 4.7.4 Given a DFSM M = (Σ, Q, δ, s, F ), RM is the equivalence relation defined
as follows: for all u, v ∈ Σ∗, uRMv if and only if δ(s, u) = δ(s, v). (Note that δ(q, ε) = q.)
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It is straightforward to show that the equivalence relations RL and RM are right-invariant.
(See Problems 4.28 and 4.29.) It is also clear that RM has as many equivalence classes as there
are accessible states of M .

Before we present the major results of this section we define a special machine ML that
will be seen to be a minimal machine recognizing the language L.

DEFINITION 4.7.5 Given the language L over the alphabet Σ with finite RL, the DFSM ML =
(Σ, QL, δL, sL, FL) is defined in terms of the right-invariant equivalence relation RL as follows:
a) the states QL are the equivalence classes of RL; b) the initial state sL is the equivalence class
[ε]; c) the final states FL are the equivalence classes containing strings in the language L; d) for an
arbitrary equivalence class [u] with representative element u ∈ Σ∗ and an arbitrary input letter
a ∈ Σ, the next-state transition function δL : QL × Σ �→ QL is defined by δL([u], a) = [ua].

For this definition to make sense we must show that condition c) does not contradict the
facts about RL: that an equivalence class containing a string in L does not also contain a
string that is not in L. But by the definition of RL, if we choose z = ε, we have that uRLv
only if both u and v are in L. We must also show that the next-state function definition is
consistent: it should not matter which representative of the equivalence class [u] is used. In
particular, if we denote the class [u] by [v] for v another member of the class, it should follow
that [ua] = [va]. But this is a consequence of the definition of RL.

Figure 4.20 shows the machine ML associated with L = (10∗1 + 0)∗. The initial state
is associated with [ε], which is in the language. Thus, the initial state is also a final state. The
state associated with [0] is also [ε] because ε and 0 are both in L. Thus, the transition from state
[ε] on input 0 is back to state [ε]. Problem 4.31 asks the reader to complete the description of
this machine.

We need the notion of a refinement of an equivalence relation before we establish condi-
tions for a language to be regular.

DEFINITION 4.7.6 An equivalence relation R over a set A is a refinement of an equivalence
relation S over the same set if aRb implies that aSb. A refinement R of S is strict if there exist
a, b ∈ A such that aSb but it is not true that aRb.

Over the set A = {a, b, c, d}, the relation R = {{a}, {b}, {c, d}} is a strict refinement
of the relation S = {{a, b}, {c, d}}. Clearly, if R is a refinement of S, R has no fewer
equivalence classes than does S. If the refinement R of S is strict, R has more equivalence
classes than does S.

0

1

0

1

[ε] [1]

Start

Figure 4.20 The machine ML associated with L = (10∗1 + 0)∗.
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4.7.2 The Myhill-Nerode Theorem
The following theorem uses the notion of refinement to give conditions under which a lan-
guage is regular.

THEOREM 4.7.1 (Myhill-Nerode) L is a regular language if and only if RL has a finite num-
ber of equivalence classes. Furthermore, if L is regular, it is the union of some of the equivalence
classes of RL.

Proof We begin by showing that if L is regular, RL has a finite number of equivalence
classes. Let L be recognized by the DFSM M = (Σ, Q, δ, s, F ). Then the number of
equivalence classes of RM is finite. Consider two strings u, v ∈ Σ∗ that are equivalent
under RM . By definition, u and v carry M from its initial state to the same state, whether
final or not. Thus, uz and vz also carry M to the same state. It follows that RM is right-
invariant. Because uRMv, either u and v take M to a final state and are in L or they take
M to a non-final state and are not in L. It follows from the definition of RL that uRLv.
Thus, RM is a refinement of RL. Consequently, RL has no more equivalence classes than
does RM and this number is finite.

Now let RL have a finite number of equivalence classes. We show that the machine
ML recognizes L. Since it has a finite number of states, we are done. The proof that ML

recognizes L is straightforward. If [w] is a final state, it is reached by applying to ML in
its initial state a string in [w]. Since the final states are the equivalence classes containing
exactly those strings that are in L, ML recognizes L. It follows that if L is regular, it is the
union of some of the equivalence classes of RL.

We now state an important corollary of this theorem that identifies a minimal machine
recognizing a regular language L. Two DFSMs are isomorphic if they differ only in the names
given to states.

COROLLARY 4.7.1 If L is regular, the machine ML is a minimal DFSM recognizing L. All other
such minimal machines are isomorphic to ML.

Proof From the proof of Theorem 4.7.1, if M is any DFSM recognizing L, it has no fewer
states than there are equivalence classes of RL, which is the number of states of ML. Thus,
ML has a minimal number of states.

Consider another minimal machine M0 = (Σ, Q0, δ0, s0, F0). Each state of M0 can
be identified with some state of ML. Equate the initial states of ML and M0 and let q be
an arbitrary state of M0. There is some string u ∈ Σ∗ such that q = δ0(s0, u). (If not,
M0 is not minimal.) Equate state q with state δL(sL, u) = [u] of ML. Let v ∈ [u].
If δ0(s0, v) �= q, M0 has more states than does ML, which is a contradiction. Thus, the
identification of states in these two machines is consistent. The final states F0 of M0 are
identified with those equivalence classes of ML that contain strings in L.

Consider now the next-state function δ0 of M0. Let state q of M0 be identified with
state [u] of ML and let a be an input letter. Then, if δ0(q, a) = p, it follows that p is
associated with state [ua] of ML because the input string ua maps s0 to state p in M0 and
maps sL to [ua] in ML. Thus, the next-state functions of the two machines are identical
up to a renaming of the states of the two machines.
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4.7.3 A State Minimization Algorithm
The above approach does not offer a direct way to find a minimal-state machine. In this sec-
tion we give a procedure for this purpose. Given a regular language, we construct an NFSM
that recognizes it (Theorem 4.4.1) and then convert the NFSM to an equivalent DFSM (The-
orem 4.2.1). Once we have such a DFSM M , we give a procedure to minimize the number of
states based on combining equivalence classes of the right-invariant equivalence relation RM

that are indistinguishable. (These equivalence classes are sets of states of M .) The resulting
machine is isomorphic to ML, the minimal-state machine.

DEFINITION 4.7.7 Let M = (Σ, Q, δ, s, F ) be a DFSM. The equivalence relation ≡n on states
in Q is defined as follows: two states p and q of M are n-indistinguishable (denoted p ≡n q) if
and only if for all input strings u ∈ Σ∗ of length |u| ≤ n either both δ(p, u) and δ(q, u) are in
F or both are not in F . (We write p �≡n q if p and q are not n-indistinguishable.) Two states p
and q are equivalent (denoted p ≡ q) if they are n-indistinguishable for all n ≥ 0.

For arbitrary states q1, q2, and q3, if q1 and q2 are n-indistinguishable and q2 and q3 are
n-indistinguishable, then q1 and q3 are n-indistinguishable. Thus, all three states are in the
same set of the partition and ≡n is an equivalence relation. By an extension of this type of
reasoning to all values of n, it is also clear that ≡ is an equivalence relation.

The following lemma establishes that ≡j+1 refines ≡j and that for some k and all j ≥ k,
≡j is identical to ≡k, which is in turn equal to ≡.

LEMMA 4.7.1 Let M = (Σ, Q, δ, s, F ) be an arbitrary DFSM. Over the set Q the equivalence
relation ≡n+1 is a refinement of the relation ≡n. Furthermore, if for some k ≤ |Q| − 2, ≡k+1

and ≡k are equal, then so are ≡j+1 and ≡j for all j ≥ k. In particular, ≡k and ≡ are identical.

Proof If p ≡n+1 q then p ≡n q by definition. Thus, for n ≥ 0 ≡n+1 refines ≡n.
We now show that if ≡k+1 and ≡k are equal, then ≡j+1 and ≡j are equal for all j ≥k.

Suppose not. Let l be the smallest value of j for which ≡j+1 and ≡j are equal but ≡j+2 and
≡j+1 are not equal. It follows that there exist two states p and q that are indistinguishable
for input strings of length l + 1 or less but are distinguishable for some input string v of
length |v| = l+2. Let v = au where a ∈ Σ and |u| = l+1. Since δ(p, v) = δ(δ(p, a), u)
and δ(q, v) = δ(δ(q, a), u), it follows that the states δ(p, a) and δ(q, a) are distinguishable
by some string u of length l + 1 but not by any string of length l. But this contradicts the
assumption that ≡l+1 and ≡l are equal.

The relation ≡0 has two equivalence classes, the final states and all other states. For each
integer j ≤ k, where k is the smallest integer such that ≡k+1 and ≡k are equal, ≡j has at
least one more equivalence class than does ≡j−1. That is, it has at least j + 2 classes. Since
≡k can have at most |Q| equivalence classes, it follows that k + 2 ≤ |Q|.

Clearly, ≡k and ≡ are identical because if two states cannot be distinguished by input
strings of length k or less, they cannot be distinguished by input strings of any length.

The proof of this lemma provides an algorithm to compute the equivalence relation ≡,
namely, compute the relations ≡j , 0 ≤ j ≤ |Q| − 2 in succession until we find two relations
that are identical. We find ≡j+1 from ≡j as follows: for every pair of states (p, q) in an
equivalence class of ≡j , we find their successor states δ(p, a) and δ(q, a) under input letter
a for each such letter. If for all letters a, δ(p, a) ≡j δ(q, a) and p ≡j q, then p ≡j+1 q
because we cannot distinguish between p and q on inputs of length j + 1 or less. Thus, the
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algorithm compares each pair of states in an equivalence class of ≡j and forms equivalence
classes of ≡j+1 by grouping together states whose successors under input letters are in the
same equivalence class of ≡j .

To illustrate these ideas, consider the DFSM of Fig. 4.14. The equivalence classes of ≡0 are
{{s0, qR}, {q1, q2, q3}}. Since δ(s0, 0) and δ(qR, 0) are different, s0 and qR are in different
equivalence classes of≡1. Also, because δ(q3, 0) = qR and δ(q1, 0) = δ(q2, 0) = q1 ∈ F , q3 is
in a different equivalence class of≡1 from q1 and q2. The latter two states are in the same equiv-
alence class because δ(q1, 1) = δ(q2, 1) = qR �∈ F . Thus, ≡1= {{s0}, {qR}, {q3}, {q1, q2}}.
The only one of these equivalence classes that could be refined is the last one. However, since
we cannot distinguish between the two states in this class under any input, no further refine-
ment is possible and ≡=≡1.

We now show that if two states are equivalent under ≡, they can be combined, but if they
are distinguishable under ≡, they cannot. Applying this procedure provides a minimal-state
DFSM.

DEFINITION 4.7.8 Let M = (Σ, Q, δ, s, F ) be a DFSM and let ≡ be the equivalence relation
defined above over Q. The DFSM M≡ = (Σ, Q≡, δ≡, [s], F≡) associated with the relation ≡
is defined as follows: a) the states Q≡ are the equivalence classes of ≡; b) the initial state of M≡
is [s]; c) the final states F≡ are the equivalence classes containing states in F; d) for an arbitrary
equivalence class [q] with representative element q ∈ Q and an arbitrary input letter a ∈ Σ, the
next-state function δ≡ : Q≡ × Σ �→ Q≡ is defined by δ≡([q], a) = [δ(q, a)].

This definition is consistent; no matter which representative of the equivalence class [q] is
used, the next state on input a is [δ(q, a)]. It is straightforward to show that M≡ recognizes
the same language as does M . (See Problem 4.27.) We now show that M≡ is a minimal-state
machine.

THEOREM 4.7.2 M≡ is a minimal-state machine.

Proof Let M = (Σ, Q, δ, s, F ) be a DFSM recognizing L and let M≡ be the DFSM
associated with the equivalence relation ≡ on Q. Without loss of generality, we assume
that all states of M≡ are accessible from the initial state. We now show that M≡ has no
more states than ML. Suppose it has more states. That is, suppose M≡ has more states
than there are equivalence classes of RL. Then, there must be two states p and q of M
such that [p] �= [q] but that uRLv, where u and v carry M from its initial state to p and
q, respectively. (If this were not the case, any strings equivalent under RL would carry M
from its initial state s to equivalent states, contradicting the assumption that M≡ has more
states than ML.) But if uRLv, then since RL is right-invariant, uwRLvw for all w ∈ Σ∗.
However, because [p] �= [q], there is some z ∈ Σ∗ such that [p] and [q] can be distinguished.
This is equivalent to saying that uzRLvz does not hold, a contradiction. Thus, M≡ and
ML have the same number of states. Since M≡ recognizes L, it is a minimal-state machine
equivalent to M .

As shown above, the equivalence relation ≡ for the DFSM of Fig. 4.14 is ≡ is {{s0},
{qR}, {q3}, {q1, q2}}. The DFSM associated with this relation, M≡, is shown in Fig. 4.21.
It clearly recognizes the language 10∗ + 0. It follows that the equivalent DFSM of Fig. 4.14 is
not minimal.
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Figure 4.21 A minimal-state DFSM equivalent to the DFSM in Fig. 4.14.

4.8 Pushdown Automata
The pushdown automaton (PDA) has a one-way, read-only, potentially infinite input tape on
which an input string is written (see Fig. 4.22); its head either advances to the right from the
leftmost cell or remains stationary. It also has a stack, a storage medium analogous to the stack
of trays in a cafeteria. The stack is a potentially infinite ordered collection of initially blank
cells with the property that data can be pushed onto it or popped from it. Data is pushed onto
the top of the stack by moving all existing entries down one cell and inserting the new element
in the top location. Data is popped by removing the top element and moving all other entries
up one cell. The control unit of a pushdown automaton is a finite-state machine. The full
power of the PDA is realized only when its control unit is nondeterministic.

DEFINITION 4.8.1 A pushdown automaton (PDA) is a six-tuple M = (Σ, Γ, Q, Δ, s, F ),
where Σ is the tape alphabet containing the blank symbol β, Γ is the stack alphabet containing
the blank symbol γ, Q is the finite set of states, Δ ⊆ (Q×(Σ∪{ε})×(Γ∪{ε})×Q×(Γ∪{ε}))
is the set of transitions, s is the initial state, and F is the set of final states. We now describe
transitions.

If for state p, tape symbol x, and stack symbol y the transition (p, x, y; q, z) ∈ Δ, then if M
is in state p, x ∈ Σ is under its tape head, and y ∈ Γ is at the top of its stack, M may pop y from
its stack, enter state q ∈ Q, and push z ∈ Γ onto its stack. However, if x = ε, y = ε or z = ε,
then M does not read its tape, pop its stack or push onto its stack, respectively. The head on the tape
either remains stationary if x = ε or advances one cell to the right if x �= ε.

If at each point in time a unique transition (p, x, y; q, z) may be applied, the PDA is deter-
ministic. Otherwise it is nondeterministic.

The PDA M accepts the input string w ∈ Σ∗ if when started in state s with an empty
stack (its cells contain the blank stack symbol γ) and w placed left-adjusted on its otherwise blank
tape (its blank cells contain the blank tape symbol β), the last state entered by M after reading
the components of w and no other tape cells is a member of the set F . M accepts the language
L(M) consisting of all such strings.

Some of the special cases for the action of the PDA M on empty tape or stack sym-
bols are the following: if (p, x, ε; q, z), x is read, state q is entered, and z is pushed onto
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Unit
Control

One-way read-only input tape

Stack

Figure 4.22 The control unit, one-way input tape, and stack of a pushdown automaton.

the stack; if (p, x, y; q, ε), x is read, state q is entered, and y is popped from the stack;
if (p, ε, y; q, z), no input is read, y is popped, z is pushed and state q is entered. Also, if
(p, ε, ε; q, ε), M moves from state p to q without reading input, or pushing or popping the
stack.

Observe that if every transition is of the form (p, x, ε; q, ε), the PDA ignores the stack and
simulates an FSM. Thus, the languages accepted by PDAs include the regular languages.

We emphasize that a PDA is nondeterministic if for some state q, tape symbol x, and top
stack item y there is more than one transition that M can make. For example, if Δ contains
(s, a, ε; s, a) and (s, a, a; r, ε), M has the choice of ignoring or popping the top of the stack
and of moving to state s or r. If after reading all symbols of w M enters a state in F , then M
accepts w.

We now give two examples of PDAs and the languages they accept. The first accepts
palindromes of the form {wcwR}, where wR is the reverse of w and w ∈ {a, b}∗. The state
diagram of its control unit is shown in Fig. 4.23. The second PDA accepts those strings over
{a, b} of the form anbm for which n ≥ m.

EXAMPLE 4.8.1 The PDA M = (Σ, Γ, Q, Δ, s, F ), where Σ = {a, b, c, β}, Γ = {a, b, γ},
Q = {s, p, r, f}, F = {f} and Δ contains the transitions shown in Fig. 4.24, accepts the
language L = {wcwR}.

The PDA M of Figs. 4.23 and 4.24 remains in the stacking state s while encountering
a’s and b’s on the input tape, pushing these letters (the order of these letters on the stack is the
reverse of their order on the input tape) onto the stack (Rules (a) and (b)). If it encounters an
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β, b; ε
a, γ; ε

b, a; ε
c, ε; ε

a, b; ε

β, a; ε

b, b; εa, a; ε

s r

p

b, γ; ε

Start

a, ε; a

b, ε; b

c, ε; ε

β, ε; ε

ε, ε; ε

β, γ; ε

f
ε, ε; ε

Figure 4.23 State diagram for the pushdown automaton of Fig. 4.24 which accepts {wcwR}.
An edge label a, b; c between states p and q corresponds to the transition (p, a, b; q, c).

instance of letter c while in state s, it enters the possible accept state p (Rule (c)) but enters
the reject state r if it encounters a blank on the input tape (Rule (d)). While in state p it
pops an a or b that matches the same letter on the input tape (Rules (e) and (f )). If the PDA
discovers blank tape and stack symbols, it has identified a palindrome and enters the accept
state f (Rule (g)). On the other hand, if while in state p the tape symbol and the symbol on
the top of the stack are different or the letter c is encountered, the PDA enters the reject state
r (Rules (h)–(n)). Finally, the PDA does not exit from either the reject or accept states (Rules
(o) and (p)).

Rule Comment

(a) (s, a, ε; s, a) push a

(b) (s, b, ε; s, b) push b

(c) (s, c, ε; p, ε) accept?

(d) (s, β, ε; r, ε) reject

(e) (p, a, a; p, ε) accept?

(f) (p, b, b; p, ε) accept?

(g) (p, β, γ; f , ε) accept

(h) (p, a, b; r, ε) reject

Rule Comment

(i) (p, b, a; r, ε) reject

(j) (p, β, a; r, ε) reject

(k) (p, β, b; r, ε) reject

(l) (p, a, γ; r, ε) reject

(m) (p, b, γ; r, ε) reject

(n) (p, c, ε; r, ε) reject

(o) (r, ε, ε; r, ε) stay in reject state

(p) (f , ε, ε; f , ε) stay in accept state

Figure 4.24 Transitions for the PDA described by the state diagram of Fig. 4.23.
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Rule Comment

(a) (s, β, ε; f , ε) accept

(b) (s, a, ε; s, a) push a

(c) (s, b, γ; r, ε) reject

(d) (s, b, a; p, ε) pop a, enter pop state

(e) (p, b, a; p, ε) pop a

(f) (p, b, γ; r, ε) reject

Rule Comment

(g) (p, β, a; f , ε) accept

(h) (p, β, γ; f , ε) accept

(i) (p, a, ε; r, ε) reject

(j) (f , ε, ε; f , ε) stay in accept state

(k) (r, ε, ε; r, ε) stay in reject state

Figure 4.25 Transitions for a PDA that accepts the language {anbm |n ≥ m ≥ 0}.

EXAMPLE 4.8.2 The PDA M = (Σ, Γ, Q, Δ, s, F ), where Σ = {a, b, β}, Γ = {a, b, γ},
Q = {s, p, r, f}, F = {f} and Δ contains the transitions shown in Fig. 4.25, accepts the
language L = {anbm |n ≥ m ≥ 0}. The state diagram for this machine is shown in Fig. 4.26.

The rules of Fig. 4.25 work as follows. An empty input in the stacking state s is accepted
(Rule (a)). If a string of a’s is found, the PDA remains in state s and the a’s are pushed onto
the stack (Rule (b)). At the first discovery of a b in the input while in state s, if the stack is
empty, the input is rejected by entering the reject state (Rule (c)). If the stack is not empty,
the a at the top is popped and the PDA enters the pop state p (Rule (d)). If while in p a b
is discovered on the input tape when an a is found at the top of the stack (Rule(e)), the PDA
pops the a and stays in this state because it remains possible that the input contains no more b’s
than a’s. On the other hand, if the stack is empty when a b is discovered, the PDA enters the
reject state (Rule (f )). If in state p the PDA discovers that it has more a’s than b’s by reading

r

p

Start

a, ε; a

ε, ε; ε

b, a; ε

ε, ε; ε

β, ε; ε

b, γ; ε

b, γ; ε

β, γ; ε

β, a; εb, a; ε

s

f

a, ε; ε

Figure 4.26 The state diagram for the PDA defined by the tables in Fig. 4.25.
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the blank tape letter β when the stack is not empty, it enters the accept state f (Rule (g)). If
the PDA encounters an a on its input tape when in state p, an a has been received after a b
and the input is rejected (Rule (i)). After the PDA enters either the accept or reject states, it
remains there (Rules (j) and (k)).

In Section 4.12 we show that the languages recognized by pushdown automata are exactly
the languages defined by the context-free languages described in the next section.

4.9 Formal Languages
Languages are introduced in Section 1.2.3. A language is a set of strings over a finite set Σ,
with |Σ| ≥ 2, called an alphabet. Σ∗ is the language of all strings over Σ including the empty
string ε, which has zero length. The empty string has the property that for an arbitrary string
w, εw = w = wε. Σ+ is the set Σ∗ without the empty string.

In this section we introduce grammars for languages, rules for rewriting strings through
the substitution of substrings. A grammar consists of alphabets T and N of terminal and
non-terminal symbols, respectively, a designated non-terminal start symbol, plus a set of rules
R for rewriting strings. Below we define four types of language in terms of their grammars:
the phrase-structure, context-sensitive, context-free, and regular grammars.

The role of grammars is best illustrated with an example for a small fragment of English.
Consider a grammar G whose non-terminals N contain a start symbol S denoting a generic
sentence and NP and VP denoting generic noun and verb phrases, respectively. In turn, assume
that N also contains non-terminals for adjectives and adverbs, namely AJ and AV. Thus, N =
{S, NP, VP, AJ, AV, N, V}. We allow the grammar to have the following words as terminals:
T = {bob, alice, duck , big , smiles , quacks , loudly}. Here bob, alice, and duck are nouns,
big is an adjective, smiles and quacks are verbs, and loudly is an adverb. In our fragment of
English a sentence consists of a noun phrase followed by a verb phrase, which we denote by the
rule S → NP VP. This and the other rules R of the grammar are shown below. They include
rules to map non-terminals to terminals, such as N → bob

S → NP VP

NP → N

NP → AJ N

VP → V

VP → V AV

N → bob

N → alice

N → duck

AJ → big

V → smiles

V → quacks

AV → loudly

With these rules the following strings (sentences) can be generated: bob smiles ; big duck
quacks loudly ; and alice quacks . The first two sentences are acceptable English sentences,
but the third is not if we interpret alice as a person. This example illustrates the need for rules
that limit the rewriting of non-terminals to an appropriate context of surrounding symbols.

Grammars for formal languages generalize these ideas. Grammars are used to interpret
programming languages. A language is translated and given meaning through a series of steps
the first of which is lexical analysis. In lexical analysis symbols such as a , l , i , c, e are grouped
into tokens such as alice, or some other string denoting alice. This task is typically done with
a finite-state machine. The second step in translation is parsing, a process in which a tokenized
string is associated with a series of derivations or applications of the rules of a grammar. For
example, big duck quacks loudly , can be produced by the following sequence of derivations:
S → NP VP; NP → AJ N; AJ → big ; N → duck ; VP → V AV; V → quacks ; AV → loudly .
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In his exploration of models for natural language, Noam Chomsky introduced four lan-
guage types of decreasing expressibility, now called the Chomsky hierarchy, in which each
language is described by the type of grammar generating it. These languages serve as a basis for
the classification of programming languages. The four types are the phrase-structure languages,
the context-sensitive languages, the context-free languages, and the regular languages.

There is an exact correspondence between each of these types of languages and particular
machine architectures in the sense that for each language type T there is a machine architecture
A recognizing languages of type T and for each architecture A there is a type T such that all
languages recognized by A are of type T . The correspondence between language and architec-
ture is shown in the following table, which also lists the section or problem where the result is
established. Here the linear bounded automaton is a Turing machine in which the number
of tape cells that are used is linear in the length of the input string.

Level Language Type Machine Type Proof Location

0 phrase-structure Turing machine Section 5.4
1 context-sensitive linear bounded automaton Problem 4.36
2 context-free nondet. pushdown automaton Section 4.12
3 regular finite-state machine Section 4.10

We now give formal definitions of each of the grammar types under consideration.

4.9.1 Phrase-Structure Languages
In Section 5.4 we show that the phrase-structure grammars defined below are exactly the lan-
guages that can be recognized by Turing machines.

DEFINITION 4.9.1 A phrase-structure grammar G is a four-tuple G = (N , T ,R, S) where
N and T are disjoint alphabets of non-terminals and terminals, respectively. Let V = N ∪T .
The rules R form a finite subset of V +× V ∗ (denoted R ⊆ V +× V ∗) where for every rule
(a, b) ∈ R, a contains at least one non-terminal symbol. The symbol S ∈ N is the start symbol.

If (a, b) ∈ R we write a → b. If u ∈ V + and a is a contiguous substring of u, then u can
be replaced by the string v by substituting b for a. If this holds, we write u ⇒G v and call it an
immediate derivation. Extending this notation, if through a sequence of immediate derivations
(called a derivation) u ⇒G x1, x1 ⇒G x2, · · · , xn ⇒G v we can transform u to v, we
write u

∗⇒G v and say that v derives from u. If the rules R contain (a, a) for all a ∈ N+, the
relation ∗⇒G is called the transitive closure of the relation ⇒G and u

∗⇒G u for all u ∈ V ∗

containing at least one non-terminal symbol.
The language L(G) defined by the grammar G is the set of all terminal strings that can be

derived from the start symbol S; that is,

L(G) = {u ∈ T ∗ | S
∗⇒G u}

When the context is clear we drop the subscript G in ⇒G and
∗⇒G. These definitions are

best understood from an example. In all our examples we use letters in SMALL CAPS to denote
non-terminals and letters in italics to denote terminals, except that ε, the empty letter, may
also be a terminal.
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EXAMPLE 4.9.1 Consider the grammar G1 = (N1, T1,R1, S), where N1 = {S, B, C}, T1 =
{a, b, c} and R1 consists of the following rules:

a) S → aSBC

b) S → aBC

c) CB → BC

d) aB → ab

e) bB → bb

f) bC → bc

g) cC → cc

Clearly the string aaBCBC can be rewritten as aaBBCC using rule (c), that is, aaBCBC ⇒
aaBBCC. One application of (d), one of (e), one of (f ), and one of (g) reduces it to the string
aabbcc. Since one application of (a) and one of (b) produces the string aaBBCC, it follows
that the language L(G1) contains aabbcc.

Similarly, two applications of (a) and one of (b) produce aaaBCBCBC, after which three
applications of (c) produce the string aaaBBBCCC. One application of (d) and two of (e)
produce aaabbbCCC, after which one application of (f ) and two of (g) produces aaabbbccc.
In general, one can show that L(G1) = {anbncn |n ≥ 1}. (See Problem 4.38.)

4.9.2 Context-Sensitive Languages
The context-sensitive languages are exactly the languages accepted by linear bounded automata,
nondeterministic Turing machines whose tape heads visit a number of cells that is a constant
multiple of the length of an input string. (See Problem 4.36.)

DEFINITION 4.9.2 A context-sensitive grammar G is a phrase structure grammar G = (N ,
T , R, S) in which each rule (a, b) ∈ R satisfies the condition that b has no fewer characters
than does a, namely, |a| ≤ |b|. The languages defined by context-sensitive grammars are called
context-sensitive languages (CSL).

Each rule of a context-sensitive grammar maps a string to one that is no shorter. Since the
left-hand side of a rule may have more than one character, it may make replacements based
on the context in which a non-terminal is found. Examples of context-sensitive languages are
given in Problems 4.38 and 4.39.

4.9.3 Context-Free Languages
As shown in Section 4.12, the context-free languages are exactly the languages accepted by
pushdown automata.

DEFINITION 4.9.3 A context-free grammar G = (N , T ,R, S) is a phrase structure grammar
in which each rule in R ⊆ N ×V ∗ has a single non-terminal on the left-hand side. The languages
defined by context-free grammars are called context-free languages (CFL).

Each rule of a context-free grammar maps a non-terminal to a string over V ∗ without
regard to the context in which the non-terminal is found because the left-hand side of each
rule consists of a single non-terminal.

EXAMPLE 4.9.2 Let N2 = {S, A}, T2 = {ε, a, b}, and R2 = {S → aSb, S → ε}. Then the
grammar G2 = (N2, T2,R2, S) is context-free and generates the language L(G2) = {anbn |n ≥
0}. To see this, let the rule S → aSb be applied k times to produce the string akSbk. A final
application of the last rule establishes the result.
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EXAMPLE 4.9.3 Consider the grammar G3 with the following rules and the implied terminal and
non-terminal alphabets:

a) S → cMcNc

b) M → aMa

c) M → c

d) N → bNb

e) N → c

G3 is context-free and generates the language L(G3) = {cancancbmcbmc |n, m ≥ 0}, as is
easily shown.

Context-free languages capture important aspects of many programming languages. As
a consequence, the parsing of context-free languages is an important step in the parsing of
programming languages. This topic is discussed in Section 4.11.

4.9.4 Regular Languages
DEFINITION 4.9.4 A regular grammar G is a context-free grammar G = (N , T ,R, S), where
the right-hand side is either a terminal or a terminal followed by a non-terminal. That is, its rules
are of the form A → a or A → bC. The languages defined by regular grammars are called regular
languages.

Some authors define a regular grammar to be one whose rules are of the form A → a
or A → b1b2 · · · bkC. It is straightforward to show that any language generated by such a
grammar can be generated by a grammar of the type defined above.

The following grammar is regular.

EXAMPLE 4.9.4 Consider the grammar G4 = (N4, T4,R4, S) where N4 = {S, A, B}, T4 =
{0,1} and R4 consists of the rules given below.

a) S → 0A

b) S → 0

c) A → 1B

d) B → 0A

e) B → 0

It is straightforward to see that the rules a) S → 0, b) S → 01B, c) B → 0, and d) B → 01B

generate the same strings as the rules given above. Thus, the language G4 contains the strings
0, 010, 01010, 0101010, . . ., that is, strings of the form (01)k0 for k ≥ 0. Consequently
L(G4) = (01)∗0. A formal proof of this result is left to the reader. (See Problem 4.44.)

4.10 Regular Language Recognition
As explained in Section 4.1, a deterministic finite-state machine (DFSM) M is a five-tuple
M = (Σ, Q, δ, s, F ), where Σ is the input alphabet, Q is the set of states, δ : Q× Σ �→ Q is
the next-state function, s is the initial state, and F is the set of final states. A nondeterministic
FSM (NFSM) is similarly defined except that δ is a next-set function δ : Q × Σ �→ 2Q. In
other words, in an NFSM there may be more than one next state for a given state and input.
In Section 4.2 we showed that the languages recognized by these two machine types are the
same.

We now show that the languages L(G) and L(G) ∪ {ε} defined by regular grammars G
are exactly those recognized by FSMs.
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THEOREM 4.10.1 The languages L(G) and L(G) ∪ {ε} generated by regular grammars G and
recognized by finite-state machines are the same.

Proof Given a regular grammar G, we construct a corresponding NFSM M that accepts
exactly the strings generated by G. Similarly, given a DFSM M we construct a regular
grammar G that generates the strings recognized by M .

From a regular grammar G = (N , T ,R, S) with rules R of the form A → a and
A → bC we create a grammar G′ generating the same language by replacing a rule A → a
with rules A → aB and B → ε where B is a new non-terminal unique to A → a. Thus,
every derivation S

∗⇒G w, w ∈ T ∗, now corresponds to a derivation S
∗⇒G′ wB where

B → ε. Hence, the strings generated by G and G′ are the same.
Now construct an NFSM MG′ whose states correspond to the non-terminals of this new

regular grammar and whose input alphabet is its set of terminals. Let the start state of MG′

be labeled S. Let there be a transition from state A to state B on input a if there is a rule
A → aB in G′. Let a state B be a final state if there is a rule of the form B → ε in G′.
Clearly, every derivation of a string w in L(G′) corresponds to a path in M that begins in
the start state and ends on a final state. Hence, w is accepted by MG′ . On the other hand,
if a string w is accepted by MG′ , given the one-to-one correspondence between edges and
rules, there is a derivation of w from S in G′. Thus, the strings generated by G and the
strings accepted by MG′ are the same.

Now assume we are given a DFSM M that accepts a language LM . Create a grammar
GM whose non-terminals are the states of M and whose start symbol is the start state of M .
GM has a rule of the form q1 → aq2 if M makes a transition from state q1 to q2 on input
a. If state q is a final state of M , add the rule q → ε. If a string is accepted by M , that is, it
causes M to move to a final state, then GM generates the same string. Since GM generates
only strings of this kind, the language accepted by M is is L(GM ). Now convert GM to
a regular grammar G̃M by replacing each pair of rules q1 → aq2, q2 → ε by the pair
q1 → aq2, q1 → a, deleting all rules q → ε corresponding to unreachable final states q,
and deleting the rule S → ε if ε ∈ LM . Then, LM − {ε} = L(GM )− {ε} = L(G̃M ).

S B

00

A

0 0

Start 1

C D

Figure 4.27 A nondeterministic FSM that accepts a language generated by a regular language in
which all rules are of the form A → bC or A → ε. A state is associated with each non-terminal, the
start symbol S is associated with the start state, and final states are associated with non-terminals
A such that A → ε. This particular NFSM accepts the language L(G4) of Example 4.9.4.
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A simple example illustrates the construction of an NFSM from a regular grammar. Con-
sider the grammar G4 of Example 4.9.4. A new grammar G′

4 is constructed with the following
rules: a) S → 0A, b) S → 0C, c) C → ε, d) A → 1B, e) B → 0A, f ) B → 0D, and g) D → ε.
Figure 4.27 (page 185) shows an NFSM that accepts the language generated by this gram-
mar. A DFSM recognizing the same language can be obtained by invoking the construction of
Theorem 4.2.1.

4.11 Parsing Context-Free Languages
Parsing is the process of deducing those rules of a grammar G (a derivation) that generates a
terminal string w. The first rule must have the start symbol S on the left-hand side. In this
section we give a brief introduction to the parsing of context-free languages, a topic central
to the parsing of programming languages. The reader is referred to a textbook on compilers
for more detail on this subject. (See, for example, [11] and [98].) The concepts of Boolean
matrix multiplication and transitive closure are used in this section, topics that are covered in
Chapter 6.

Generally a string w has many derivations. This is illustrated by the context-free grammar
G3 defined in Example 4.9.3 and described below.

EXAMPLE 4.11.1 G3 = (N3, T3,R3, S), where N3 = {S, M, N}, T3 = {A, B, C} and R3

consists of the rules below:

a) S → cMNc

b) M → aMa

c) M → c

d) N → bNb

e) N → c

The string caacaabcbc can be derived by applying rules (a), (b) twice, (c), (d) and (e) to
produce the following derivation:

S ⇒ cMNc ⇒ caMaNc ⇒ ca2Ma2Nc

⇒ ca2ca2Nc ⇒ ca2ca2bNbc ⇒ ca2ca2bcbc
(4.2)

The same string can be obtained by applying the rules in the following order: (a), (d), (e),
(b) twice, and (c). Both derivations are described by the parse tree of Fig. 4.28. In this tree
each instance of a non-terminal is rewritten using one of the rules of the grammar. The order
of the descendants of a non-terminal vertex in the parse tree is the order of the corresponding
symbols in the string obtained by replacing this non-terminal. The string ca2ca2bcbc, the
yield of this parse tree, is the terminal string obtained by visiting the leaves of this tree in a
left-to-right order. The height of the parse tree is the number of edges on the longest path
(having the most edges) from the root (associated with the start symbol) to a terminal symbol.
A parser for a language L(G) is a program or machine that examines a string and produces a
derivation of the string if it is in the language and an error message if not.

Because every string generated by a context-free grammar has a derivation, it has a cor-
responding parse tree. Given a derivation, it is straightforward to convert it to a leftmost
derivation, a derivation in which the leftmost remaining non-terminal is expanded first. (A
rightmost derivation is a derivation in which the rightmost remaining non-terminal is ex-
panded first.) Such a derivation can be obtained from the parse tree by deleting all vertices
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a M a

c cM N

Figure 4.28 A parse tree for the grammar G3.

associated with terminals and then traversing the remaining vertices in a depth-first manner
(visit the first descendant of a vertex before visiting its siblings), assuming that descendants of
a vertex are ordered from left to right. When a vertex is visited, apply the rule associated with
that vertex in the tree. The derivation given in (4.2) is leftmost.

Not only can some strings in a context-free language have multiple derivations, but in
some languages they have multiple parse trees. Languages containing strings with more than
one parse tree are said to be ambiguous languages. Otherwise languages are non-ambiguous.

Given a string that is believed to be generated by a grammar, a compiler attempts to parse
the string after first scanning the input to identify letters. If the attempt fails, an error message
is produced. Given a string generated by a context-free grammar, can we guarantee that we can
always find a derivation or parse tree for that string or determine that none exists? The answer
is yes, as we now show.

To demonstrate that every CFL can be parsed, it is convenient first to convert the grammar
for such a language to Chomsky normal form.

DEFINITION 4.11.1 A context-free grammar G is in Chomsky normal form if every rule is of
the form A → BC or A → u, u ∈ T except if ε ∈ L(G), in which case S → ε is also in the
grammar.

We now give a procedure to convert an arbitrary context-free grammar to Chomsky normal
form.

THEOREM 4.11.1 Every context-free language can be generated by a grammar in Chomsky normal
form.

Proof Let L = L(G) where G is a context-free grammar. We construct a context-free gram-
mar G′ that is in Chomsky normal form. The process described in this proof is illustrated
by the example that follows.

Initially G′ is identical with G. We begin by eliminating all ε-rules of the form B → ε.
except for S → ε if ε ∈ L(G). If either B → ε or B ⇒ ε, for every rule that has B on the
right-hand side, such as A → αBβBγ, α, β, γ ∈ (V −{B})∗ (V = N ∪T ), we add a rule
for each possible replacement of B by ε; for example, we add A → αβBγ, A → αBβγ,
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and A → αβγ. Clearly the strings generated by the new rules are the same as are generated
by the old rules.

Let A → w1 · · ·wi · · ·wk for some k ≥ 1 be a rule in G′ where wi ∈ V . We replace
this rule with the new rules A → Z1Z2 · · ·Zk, and Zi → wi for 1 ≤ i ≤ k. Here Zi is a
new non-terminal. Clearly, the new version of G′ generates the same language as does G.

With these changes the rules of G′ consist of rules either of the form A → u, u ∈ T
(a single terminal) or A → w, w ∈ N+ (a string of at least one non-terminal). There are
two cases of w ∈ N+ to consider, a) |w| = 1 and b) |w| ≥ 2. We begin by eliminating all
rules of the first kind, that is of the form A → B.

Rules of the form A → B can be cascaded to form rules of the type C
∗⇒ D. The number

of distinct derivations of this kind is at most |N |! because if any derivation contains two
instances of a non-terminal, the derivation can be shortened. Thus, we need only consider
derivations in which each non-terminal occurs at most once. For each such pair C, D with
a relation of this kind, add the rule C → D to G′. If C → D and D → w for |w| ≥ 2 or
w = u ∈ T , add C → w to the set of rules. After adding all such rules, delete all rules of
the form A → B. By construction this new set of rules generates the same language as the
original set of rules but eliminates all rules of the first kind.

We now replace rules of the type A → A1A2 · · · Ak, k ≥ 3. Introduce k − 2 new
non-terminals N1, N2, · · · , Nk−2 peculiar to this rule and replace the rule with the following
rules: A → A1N1, N1 → A2N2, · · · , Nk−3 → Ak−2Nk−2, Nk−2 → Ak−1Ak. Clearly, the
new grammar generates the same language as the original grammar and is in the Chomsky
normal form.

EXAMPLE 4.11.2 Let G5 = (N5, T5,R5, E) (with start symbol E) be the grammar with N5 =
{E, T, F}, T5 = {a, b, +, ∗, (, )}, and R5 consisting of the rules given below:

a) E → E + T

b) E → T

c) T → T ∗ F

d) T → F

e) F → (E)
f) F → a

g) F → b

Here E, T, and F denote expressions, terms, and factors. It is straightforward to show that E
∗⇒ (a∗

b + a) ∗ (a + b) and E
∗⇒ a ∗ b + a are two possible derivations.

We convert this grammar to the Chomsky normal form using the method described in the
proof of Theorem 4.11.1. Since R contains no ε-rules, we do not need the rule E → ε, nor
do we need to eliminate ε-rules.

First we convert rules of the form A → w so that each entry in w is a non-terminal. To
do this we introduce the non-terminals (, ), +, and ∗ and the rules below. Here we use a
boldface font to distinguish between the non-terminal and terminal equivalents of these four
mathematical symbols. Since we are adding to the original set of rules, we number them
consecutively with the original rules.

h) ( → (
i) ) → )

j) + → +
k) ∗ → ∗

Next we add rules of the form C → D for all chains of single non-terminals such that
C

∗⇒ D. Since by inspection E
∗⇒ F, we add the rule E → F. For every rule of the form A → B

for which B → w, we add the rule A → w. We then delete all rules of the form A → B. These
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changes cause the rules of G′ to become the following. (Below we use a different numbering
scheme because all these rules replace rules (a) through (k).)

1) E → E+T

2) E → T∗F

3) E → (E)

4) E → a

5) E → b

6) T → T∗F

7) T → (E)

8) T → a

9) T → b

10) F → (E)

11) F → a

12) F → b

13) ( → (
14) ) → )
15) + → +
16) ∗ → ∗

We now reduce the number of non-terminals on the right-hand side of each rule to two
through the addition of new non-terminals. The result is shown in Example 4.11.3 below,
where we have added the non-terminals A, B, C, D, G, and H.

EXAMPLE 4.11.3 Let G6 = (N6, T6,R6, E) (with start symbol E) be the grammar with N6 =
{A, B, C, D, E, F, G, H, T, +, ∗, (, )}, T6 = {a, b, +, ∗, (, )}, and R6 consisting of the rules given
below.

(A) E → EA

(B) A → +T

(C) E → TB

(D) B → ∗F

(E) E → (C

(F ) C → E)

(G) E → a

(H) E → b

(I) T → TD

(J) D → ∗F

(K) T → (G

(L) G → E)

(M) T → a

(N) T → b

(P ) F → (H

(Q) H → E)

(R) F → a

(S) F → b

(T ) ( → (
(U) ) → )
(V ) + → +
(W ) ∗ → ∗

The new grammar clearly generates the same language as does the original grammar, but it
is in Chomsky normal form. It has 22 rules, 13 non-terminals, and six terminals whereas the
original grammar had seven rules, three non-terminals, and six terminals.

We now use the Chomsky normal form to show that for every CFL there is a polynomial-
time algorithm that tests for membership of a string in the language. This algorithm can be
practical for some languages.

THEOREM 4.11.2 Given a context-free grammar G = (N , T ,R, S), an O(n3|N |2)-step algo-
rithm exists to determine whether or not a string w ∈ T ∗ of length n is in L(G) and to construct
a parse tree for it if it exists.

Proof If G is not in Chomsky normal form, convert it to this form. Given a string w =
(w1, w2, . . . , wn), the goal is to determine whether or not S

∗⇒ w. Let ∅ denote the empty
set. The approach taken is to construct an (n + 1) × (n + 1) set matrix S whose entries
are sets of non-terminals of G with the property that the i, j entry, ai,j , is the set of non-
terminals C such that C

∗⇒ wi · · · wj−1. Thus, the string w is in L(G) if S ∈ a1,n+1, since
S generates the entire string w. Clearly, ai,j = ∅ for j ≤ i. We illustrate this construction
with the example following this proof.

We show by induction that set matrix S is the transitive closure (denoted B+) of the
(n + 1) × (n + 1) set matrix B whose i, j entry bi,j = ∅ for j �= i + 1 when 1 ≤ i ≤ n
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and bi,i+1 is defined as follows:

bi,i+1 = {A | (A → wi) in R where wi ∈ T }

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∅ b1,2 ∅ . . . ∅
∅ ∅ b2,3 . . . ∅
...

...
...

. . .
...

∅ ∅ ∅ . . . bn,n+1

∅ ∅ ∅ . . . ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Thus, the entry bi,i+1 is the set of non-terminals that generate the ith terminal symbol wi

of w in one step. The value of each entry in the matrix B is the empty set except for the
entries bi,i+1 for 1 ≤ i ≤ n, n = |w|.

We extend the concept of matrix multiplication (see Chapter 6) to the product of two
set matrices. Doing this requires a new definition for the product of two sets (entries in the
matrix) as well as for the addition of two sets. The product S1 · S2 of sets of nonterminals
S1 and S2 is defined as:

S1 · S2 = {A | there exists B ∈ S1 and C ∈ S2 such that (A → BC) ∈ R}

Thus, S1 · S2 is the set of non-terminals for which there is a rule in R of the form A → BC

where B ∈ S1 and C ∈ S2. The sum of two sets is their union.
The i, j entry of the product C = D × E of two m × m matrices D and E, each

containing sets of non-terminals, is defined below in terms of the product and union of sets:

ci,j =
m⋃

k=1

di,k · ek,j

We also define the transitive closure C+ of an m ×m matrix C as follows:

C+ = C(1) ∪ C(2) ∪ C(3) ∪ · · ·C(m)

where

C(s) =
s−1⋃
r=1

C(r) × C(s−r) and C(1) = C

By the definition of the matrix product, the entry b
(2)
i,j of the matrix B(2) is ∅ if j �= i+2

and otherwise is the set of non-terminals A that produce wiwi+1 through a derivation tree
of depth 2; that is, there are rules such that A → BC, B → wi, and C → wi+1, which
implies that A

∗⇒ wiwi+1.
Similarly, it follows that both B(1)B(2) and B(2)B(1) are ∅ in all positions except i, i+3

for 1 ≤ i ≤ n − 2. The entry in position i, i + 3 of B(3) = B(1)B(2) ⋃B(2)B(1)

contains the set of non-terminals A that produce wiwi+1wi+2 through a derivation tree of
depth 3; that is, A → BC and either B produces wiwi+1 through a derivation of depth 2
(B

∗⇒ wiwi+1) and C produces wi+2 in one step (C → wi+2) or B produces wi in one step
(B → wi) and C produces wi+1wi+2 through a derivation of depth 2 (C

∗⇒ wi+1wi+2).
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Finally, the only entry in B(n) that is not ∅ is the 1, n + 1 entry and it contains the set
of non-terminals, if any, that generate w. If S is in this set, w is in L(G).

The transitive closure S = B+ involves
∑n

r=1 r = (n+1)n/2 products of set matrices.
The product of two (n + 1) × (n + 1) set matrices of the type considered here involves at
most n products of sets. Thus, at most O(n3) products of sets is needed to form S. In turn,
a product of two sets, S1 · S2, can be formed with O(q2) operations, where q = |N | is the
number of non-terminals. It suffices to compare each pair of entries, one from S1 and the
other from S2, through a table to determine if they form the right-hand side of a rule.

As the matrices are being constructed, if a pair of non-terminals is discovered that is the
right-hand side of a rule, that is, A → BC, then a link can be made from the entry A in the
product matrix to the entries B and C. From the entry S in a1,n+1, if it exists, links can be
followed to generate a parse tree for the input string.

The procedure described in this proof can be extended to show that membership in an
arbitrary CFL can be determined in time O(M(n)), where M(n) is the number of operations
to multiply two n × n matrices [341]. This is the fastest known general algorithm for this
problem when the grammar is part of the input. For some CFLs, faster algorithms are known
that are based on the use of the deterministic pushdown automaton. For fixed grammars
membership algorithms often run in O(n) steps. The reader is referred to books on compilers
for such results. The procedure of the proof is illustrated by the following example.

EXAMPLE 4.11.4 Consider the grammar G6 of Example 4.11.3. We show how the five-character
string a ∗ b + a in L(G6) can be parsed. We construct the 6× 6 matrices B(1), B(2), B(3), B(4),
B(5), as shown below. Since B(5) contains E in the 1, n + 1 position, a ∗ b + a is in the language.
Furthermore, we can follow links between non-terminals (not shown) to demonstrate that this string
has the parse tree shown in Fig. 4.29. The matrix B(4) is not shown because each of its entries is ∅.

B(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ {E,F,T} ∅ ∅ ∅ ∅
∅ ∅ {∗} ∅ ∅ ∅
∅ ∅ ∅ {E,F,T} ∅ ∅
∅ ∅ ∅ ∅ {+} ∅
∅ ∅ ∅ ∅ ∅ {E,F,T}
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ {B} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ {A}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
B(3) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ {E} ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ {E}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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∗ b

E

T+BT

∗a F + a

E A

Figure 4.29 The parse tree for the string a ∗ b + a in the language L(G6).

B(5) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ ∅ ∅ ∅ ∅ {E}
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅ ∅

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

4.12 CFL Acceptance with Pushdown Automata*
While it is now clear that an algorithm exists to parse every context-free language, it is useful
to show that there is a class of automata that accepts exactly the context-free languages. These
are the nondeterministic pushdown automata (PDA) described in Section 4.8.

We now establish the principal results of this section, namely, that the context-free lan-
guages are accepted by PDAs and that the languages accepted by PDAs are context-free. We
begin with the first result.

THEOREM 4.12.1 For each context-free grammar G there is a PDA M that accepts L(G). That
is, L(M) = L(G).

Proof Before beginning this proof, we extend the definition of a PDA to allow it to push
strings onto the stack instead of just symbols. That is, we extend the stack alphabet Γ to
include a small set of strings. When a string such as abcd is pushed, a is pushed before b, b
before c, etc. This does not increase the power of the PDA, because for each string we can
add unique states that M enters after pushing each symbol except the last. With the pushing
of the last symbol M enters the successor state specified in the transition being executed.

Let G = (N , T ,R, S) be a context-free grammar. We construct a PDA M = (Σ, Γ, Q,
Δ, s, F ), where Σ = T , Γ = N ∪ T ∪ {γ} (γ is the blank stack symbol), Q = {s, p, f},
F = {f}, and Δ consists of transitions of the types shown below. Here ∀ denotes “for all”
and ∀(A �→ w) ∈ R means for all transitions in R.
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a) (s, ε, ε; p, S)
b) (p, a, a; p, ε) ∀a ∈ T
c) (p, ε, A; p, v) ∀(A �→ v) ∈ R
d) (p, ε, γ; f , ε)

Let w be placed left-adjusted on the input tape of M . Since w is generated by G, it has
a leftmost derivation. (Consider for example that given in (4.2) on page 186.) The PDA
begins by pushing the start symbol S onto the stack and entering state p (Rule (a)). From
this point on the PDA simulates a leftmost derivation of the string w placed initially on its
tape. (See the example that follows this proof.) M either matches a terminal of G on the top
of the stack with one under the tape head (Rule (b)) or it replaces a non-terminal on the top
of the stack with a rule of R by pushing the right-hand side of the rule onto the stack (Rule
(c)). Finally, when the stack is empty, M can choose to enter the final state f and accept w.
It follows that any string that can be generated by G can also be accepted by M and vice
versa.

The leftmost derivation of the string caacaabcbc by the grammar G3 of Example 4.11.1
is shown in (4.2). The PDA M of the above proof can simulate this derivation, as we show.
With the notation T : . . . and S : . . . (shown below before the computation begins) we
denote the contents of the tape and stack at a point in time at which the underlined symbols
are those under the tape head and at the top of the stack, respectively. We ignore the blank
tape and stack symbols unless they are the ones underlined.

T : caacaabcbc S : γ

After the first step taken by M , the tape and stack configurations are:

T : caacaabcbc S : S

From this point on M simulates a derivation by G3. Consulting (4.2), we see that the rule
S → cMNc is the first to be applied. M simulates this with the transition (p, ε, S; p, cMNc),
which causes S to be popped from the stack and cMNc to be pushed onto it without advancing
the tape head. The resulting configurations are shown below:

T : caacaabcbc S : cMNc

Next the transition (p, c, c; p, ε) is applied to pop one item from the stack, exposing the non-
terminal M and advancing the tape head to give the following configurations:

T : caacaabcbc S : MNc

The subsequent rules, in order, are the following:

1) M → aMa

2) M → aMa

3) M → c

4) N → bNb

5) N → c

The corresponding transitions of the PDA are shown in Fig. 4.30.
We now show that the language accepted by a PDA can be generated by a context-free

grammar.
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T : caacaabcbc S : aMaNc

T : caacaabcbc S : MaNc

T : caacaabcbc S : aMaaNc

T : caacaabcbc S : MaaNc

T : caacaabcbc S : caaNc

T : caacaabcbc S : aaNc

T : caacaabcbc S : aNc

T : caacaabcbc S : Nc

T : caacaabcbc S : bNbc

T : caacaabcbc S : Nbc

T : caacaabcbc S : cbc

T : caacaabcbc S : bc

T : caacaabcbc S : c

T : caacaabcbcβ S : γ

Figure 4.30 PDA transitions corresponding to the leftmost derivation of the string caacaabcbc
in the grammar G3 of Example 4.11.1..

THEOREM 4.12.2 For each PDA M there is a context-free grammar G that generates the language
L(M) accepted by M . That is, L(G) = L(M).

Proof It is convenient to assume that when the PDA M accepts a string it does so with
an empty stack. If M is not of this type, we can design a PDA M ′ accepting the same
language that does meet this condition. The states of M ′ consist of the states of M plus
three additional states, a new initial state s′, a cleanup state k, and a new final state f ′. Its
tape symbols are identical to those of M . Its stack symbols consist of those of M plus one
new symbol κ. In its initial state M ′ pushes κ onto the stack without reading a tape symbol
and enters state s, which was the initial state of M . It then operates as M (it has the same
transitions) until entering a final state of M , upon which it enters the cleanup state k. In
this state it pops the stack until it finds the symbol κ, at which time it enters its final state
f ′. Clearly, M ′ accepts the same language as M but leaves its stack empty.

We describe a context-free grammar G = (N , T ,R, S) with the property that L(G) =
L(M). The non-terminals of G consist of S and the triples < p, y, q > defined below
denoting goals:

< p, y, q >∈ N where N ⊂ Q× (Γ ∪ {ε})× Q

The meaning of < p, y, q > is that M moves from state p to state q in a series of steps
during which its only effect on the stack is to pop y. The triple < p, ε, q > denotes the goal
of moving from state p to state q leaving the stack in its original condition. Since M starts
with an empty stack in state s with a string w on its tape and ends in a final state f with
its stack empty, the non-terminal < s, ε, f >, f ∈ F , denotes the goal of M moving from
state s to a final state f on input w, and leaving the stack in its original state.
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The rules of G, which represent goal refinement, are described by the following con-
ditions. Each condition specifies a family of rules for a context-free grammar G. Each
rule either replaces one non-terminal with another, replaces a non-terminal with the empty
string, or rewrites a non-terminal with a terminal or empty string followed by one or two
non-terminals. The result of applying a sequence of rules is a string of terminals in the
language L(G). Below we show that L(G) = L(M).

1) S → < s, ε, f > ∀f ∈ F

2) < p, ε, p > → ε ∀p ∈ Q

3) < p, y, r > → x < q, z, r > ∀r ∈ Q and ∀(p, x, y; q, z) ∈ Δ,

where y �= ε

4) < p, u, r > → x < q, z, t >< t, u, r > ∀r, t ∈ Q, ∀(p, x, ε; q, z) ∈ Δ,

and ∀u ∈ Γ ∪ {ε}

Condition (1) specifies rules that map the start symbol of G onto the goal non-terminal
symbol < s, ε, f > for each final state f . These rules insure that the start symbol of G is
rewritten as the goal of moving from the initial state of M to a final state, leaving the stack
in its original condition.

Condition (2) specifies rules that map non-terminals < p, ε, p > onto the empty string.
Thus, all goals of moving from a state to itself leaving the stack in its original condition can
be ignored. In other words, no input is needed to take M from state p back to itself leaving
the stack unchanged.

Condition (3) specifies rules stating that for all r ∈ Q and (p, x, y; q, z), y �= ε, that are
transitions of M , a goal < p, y, r > to move from state p to state r while removing y from
the stack can be accomplished by reading tape symbol x, replacing the top stack symbol
y with z, and then realizing the goal < q, z, r > of moving from state q to state r while
removing z from the stack.

Condition (4) specifies rules stating that for all r, t ∈ Q and (p, x, ε; q, z) that are
transitions of M , the goal < p, u, r > of moving from state p to state r while popping u
for arbitrary stack symbol u can be achieved by reading input x and pushing z on top of u
and then realizing the goal < q, z, t > of moving from q to some state t while popping z
followed by the goal < t, u, r > of moving from t to r while popping u.

We now show that any string accepted by M can be generated by G and any string
generated by G can be accepted by M . It follows that L(M) = L(G). Instead of showing
this directly, we establish a more general result.

CLAIM: For all r, t ∈ Q and u ∈ Γ ∪ {ε}, < r, u, t >
∗⇒G w if and only if the PDA M

can move from state r to state t while reading w and popping u from the stack.

The theorem follows from the claim because < s, ε, f >
∗⇒G w if and only if the PDA

M can move from initial state s to a final state f while reading w and leaving the stack
empty, that is, if and only if M accepts w.

We first establish the “if ” portion of the claim, namely, if for r, t ∈ Q and u ∈ Γ ∪ {ε}
the PDA M can move from r to t while reading w and popping u from the stack, then
< r, u, t >

∗⇒G w. The proof is by induction on the number of steps taken by M . If no
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step is taken (basis for induction), r = t, nothing is popped and the string ε is read by M .
Since the grammar G contains the rule < r, ε, r >→ ε, the basis is established.

Suppose that the “if ” portion of the claim is true for k or fewer steps (inductive hypoth-
esis). We show that it is true for k + 1 steps (induction step). If the PDA M can move
from r to t in k + 1 steps while reading w = xv and removing u from the stack, then on
its first step it must execute a transition (r, x, y; q, z), q ∈ Q, z ∈ Γ ∪ {ε}, for x ∈ Σ with
either y = u if u �= ε or y = ε. In the first case, M enters state q, pops u, and pushes
z. M subsequently pops z as it reads v and moves to state t in k steps. It follows from the
inductive hypothesis that < q, z, t >

∗⇒G v. Since y �= ε, a rule of type (3) applies, that is,
< r, y, t >→ x < q, z, t >. It follows that < r, y, t >

∗⇒G w, the desired conclusion.

In the second case y = ε and M makes the transition (r, x, ε; q, z) by moving from r to
t and pushing z while reading x. To pop u, which must have been at the top of the stack, M
must first pop z and then pop u. Let it pop z as it moves from q to some intermediate state
t′ while reading a first portion v1 of the input word v. Let it pop u as it moves from t′ to t
while reading a second portion v2 of the input word v. Here v1v2 = v. Since the move from
q to t′ and from t′ to t each involves at most k steps, it follows that the goals < q, z, t′ >

and < t′, u, r > satisfy < q, z, t′ >
∗⇒G v1 and < t′, u, r >

∗⇒G v2. Because M ’s first
transition meets condition (4), there is a rule < r, u, t >→ x < q, z, t′ >< t′, u, r >.
Combining these derivations yields the desired conclusion.

Now we establish the “only if ” part of the claim, namely, if for all r, t ∈ Q and u ∈
Γ ∪ {ε}, < r, u, t >

∗⇒G w, then the PDA M can move from state r to state t while
reading w and removing u from the stack. Again the proof is by induction, this time on
the number of derivation steps. If there is a single derivation step (basis for induction),
it must be of the type stated in condition (2), namely < p, ε, p >→ ε. Since M can
move from state p to p without reading the tape or pushing data onto its stack, the basis is
established.

Suppose that the “only if ” portion of the claim is true for k or fewer derivation steps
(inductive hypothesis). We show that it is true for k + 1 steps (induction step). That is,
if < r, u, t >

∗⇒G w in k + 1 steps, then we show that M can move from r to t while
reading w and popping u from the stack. We can assume that the first derivation step is of
type (3) or (4) because if it is of type (2), the derivation can be shortened and the result fol-
lows from the inductive hypothesis. If the first derivation is of type (3), namely, of the form
< r, u, t >→ x < q, z, t >, then by the inductive hypothesis, M can execute (r, x, u; q, z),
u �= ε, that is, read x, pop u, push z, and enter state q. Since < r, u, t >

∗⇒G w, where
w = xv, it follows that < q, z, t >

∗⇒G v. Again by the inductive hypothesis M can move
from q to t while reading v and popping z. Combining these results, we have the desired
conclusion.

If the first derivation is of type (4), namely, < r, u, t >→ x < q, z, t′ >< t′, u, t >,
then the two non-terminals < q, z, t′ > and < t′, u, t > must expand to substrings v1

and v2, respectively, of v where w = xv1v2 = xv. That is, < q, z, t′ >
∗⇒G v1 and

< t′, u, t >
∗⇒G v1. By the inductive hypothesis, M can move from q to t′ while read-

ing v1 and popping z and it can also move from t′ to t while reading v2 and popping
u. Thus, M can move from r to t while reading w and popping u, which is the desired
conclusion.
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4.13 Properties of Context-Free Languages
In this section we derive properties of context-free languages. We begin by establishing a
pumping lemma that demonstrates that every CFL has a certain periodicity property. This
property, together with other properties concerning the closure of the class of CFLs under the
operations of concatenation, union and intersection, is used to show that the class is not closed
under complementation and intersection.

4.13.1 CFL Pumping Lemma
The pumping lemma for regular languages established in Section 4.5 showed that if a regular
language contains an infinite number of strings, then it must have strings of a particular form.
This lemma was used to show that some languages are not regular. We establish a similar result
for context-free languages.

LEMMA 4.13.1 Let G = (N , T ,R, S) be a context-free grammar in Chomsky normal form
with m non-terminals. Then, if w ∈ L(G) and |w| ≥ 2m−1 + 1, there are strings r, s, t,
u, and v with w = rstuv such that |su| ≥ 1 and |stu| ≤ 2m and for all integers n ≥ 0,
S

∗⇒G rsntunv ∈ L(G).

Proof Since each production is of the form A → BC or A → a, a subtree of a parse tree of
height h has a yield (number of leaves) of at most 2h−1. To see this, observe that each rule
that generates a leaf is of the form A → a. Thus, the yield is the number of leaves in a binary
tree of height h− 1, which is at most 2h−1.

Let K = 2m−1 + 1. If there is a string w in L of length K or greater, its parse tree
has height greater than m. Thus, a longest path P in such a tree (see Fig. 4.31(a)) has more

x z

P

S

(a)

a

s

(b)

A

u

b

y

t

D

D A
SP

Figure 4.31 L(G) is generated by a grammar G in Chomsky normal form with m non-
terminals. (a) Each w ∈ L(G) with |w| ≥ 2m−1 + 1 has a parse tree with a longest path P
containing at least m + 1 non-terminals. (b) SP , the portion of P containing the last m + 1
non-terminals on P , has a non-terminal A that is repeated. The derivation A → sAu can be
deleted or repeated to generate new strings in L(G).
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than m non-terminals on it. Consider the subpath SP of P containing the last m + 1
non-terminals of P . Let D be the first non-terminal on SP and let the yield of its parse tree
be y. It follows that |y| ≤ 2m. Thus, the yield of the full parse tree, w, can be written as
w = xyz for strings x, y, and z in T ∗.

By the pigeonhole principle stated in Section 4.5, some non-terminal is repeated on SP .
Let A be such a non-terminal. Consider the first and second time that A appears on SP .
(See Fig. 4.31(b).) Repeat all the rules of the grammar G that produced the string y except
for the rule corresponding to the first instance of A on SP and all those rules that depend
on it. It follows that D

∗⇒ aAb where a and b are in T ∗. Similarly, apply all the rules to
the derivation beginning with the first instance of A on P up to but not including the rules
beginning with the second instance of A. It follows that A

∗⇒ sAu, where s and u are in T ∗

and at least one is not ε since no rules of the form A → B are in G. Finally, apply the rules
starting with the second instance of A on P . Let A

∗⇒ t be the yield of this set of rules. Since
A

∗⇒ sAu and A
∗⇒ t, it follows that L also contains xatbz. L also contains xasntunbz

for n ≥ 1 because A
∗⇒ sAu can be applied n times after A

∗⇒ sAu and before A
∗⇒ t. Now

let r = xa and v = bz.

We use this lemma to show the existence of a language that is not context-free.

LEMMA 4.13.2 The language L = {anbncn |n ≥ 0} over the alphabet Σ = {a, b, c} is not
context-free.

Proof We assume that L is context-free generated by a grammar with m non-terminals and
show this implies L contains strings not in the language. Let n0 = 2m−1 + 1.

Since L is infinite, the pumping lemma can be applied. Let rstuv = anbncn for n =
n0. From the pumping lemma rs2tu2v is also in L. Clearly if s or u is not empty (and at
least one is), then they contain either one, two, or three of the symbols in Σ. If one of them,
say s, contains two symbols, then s2 contains a b before an a or a c before a b, contradicting
the definition of the language. The same is true if one of them contains three symbols.
Thus, they contain exactly one symbol. But this implies that the number of a’s, b’s, and c’s
in rs2tu2v is not the same, whether or not s and u contain the same or different symbols.

4.13.2 CFL Closure Properties
In Section 4.6 we examined the closure properties of regular languages. We demonstrated that
they are closed under concatenation, union, Kleene closure, complementation, and intersec-
tion. In this section we show that the context-free languages are closed under concatenation,
union, and Kleene closure but not complementation or intersection. A class of languages is
closed under an operation if the result of performing the operation on one or more languages
in the class produces another language in the class.

The concatenation, union, and Kleene closure of languages are defined in Section 4.3. The
concatenation of languages L1 and L2, denoted L1 ·L2, is the language {uv | u ∈ L1 and v ∈
L2}. The union of languages L1 and L2, denoted L1 ∪ L2, is the set of strings that are in L1

or L2 or both. The Kleene closure of a language L, denoted L∗ and called the Kleene star, is
the language

⋃∞
i=0 Li where L0 = {ε} and Li = L · Li−1.

THEOREM 4.13.1 The context-free languages are closed under concatenation, union, and Kleene
closure.
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Proof Consider two arbitrary CFLs L(H1) and L(H2) generated by grammars H1 =
(N1, T1,R1, S1) and H2 = (N2, T2,R2, S2). Without loss of generality assume that their
non-terminal alphabets (and rules) are disjoint. (If not, prefix every non-terminal in the
second grammar with a symbol not used in the first. This does not change the language
generated.)

Since each string in L(H1) · L(H2) consists of a string of L(H1) followed by a string
of L(H2), it is generated by the context-free grammar H3 = (N3, T3,R3, S3) in which
N3 = N1 ∪ N2 ∪ {S3}, T3 = T1 ∪ T2, and R3 = R1 ∪R2 ∪ {S3 → S1S2}. The new rule
S3 → S1S2 generates a string of L(H1) followed by a string of L(H2). Thus, L(H1) ·L(H2)
is context-free.

The union of languages L(H1) and L(H2) is generated by the context-free grammar
H4 = (N4, T4,R4, S4) in which N4 = N1 ∪ N2 ∪ {S4}, T4 = T1 ∪ T2, and R4 = R1 ∪
R2 ∪ {S4 → S1, S4 → S2}. To see this, observe that after applying S4 → S1 all subsequent
rules are drawn from H1. (The sets of non-terminals are disjoint.) A similar statement
applies to the application of S4 → S2. Since H4 is context-free, L(H4) = L(H1) ∪ L(H2)
is context-free.

The Kleene closure of L(H1), namely L(H1)∗, is generated by the context-free grammar
H5 = (N1, T1,R5, S1) in which R5 = R1 ∪ {S1 → ε, S1 → S1S1}. To see this, observe
that L(H5) includes ε, every string in L(H1), and, through i−1 applications of S1 → S1S1,
every string in L(H1)i. Thus, L(H1)∗ is generated by H5 and is context-free.

We now use this result and Lemma 4.13.2 to show that the set of context-free languages
is not closed under complementation and intersection, operations defined in Section 4.6. The
complement of a language L over an alphabet Σ, denoted L, is the set of strings in Σ∗ that are
not in L. The intersection of two languages L1 and L2, denoted L1 ∩ L2, is the set of strings
that are in both languages.

THEOREM 4.13.2 The set of context-free languages is not closed under complementation or inter-
section.

Proof The intersection of two languages L1 and L2 can be defined in terms of the comple-
ment and union operations as follows:

L1 ∩ L2 = Σ∗ − (Σ∗ − L1) ∪ (Σ∗ − L2)

Thus, since the union of two CFLs is a CFL, if the complement of a CFL is also a CFL, from
this identity, the intersection of two CFLs is also a CFL. We now show that the intersection
of two CFLs is not always a CFL.

The language L1 = {anbncm |n, m ≥ 0} is generated by the grammar H1 = (N1, T1,
R1, S1), where N1 = {S, A, B}, T1 = {a, b, c}, and the rules R1 are:

a) S → AB

b) A → aAb

c) A → ε

d) B → Bc

e) B → ε

The language L2 = {ambncn |n, m ≥ 0} is generated by the grammar H2 = (N2, T2,
R2, S2), where N2 = {S, A, B}, T2 = {a, b, c} and the rules R2 are:
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a) S → AB

b) A → aA

c) A → ε

d) B → bBc

e) B → ε

Thus, the languages L1 and L2 are context-free. However, their intersection is L1∩L2 =
{anbncn |n ≥ 0}, which was shown in Lemma 4.13.2 not to be context-free. Thus, the set
of CFLs is not closed under intersection, nor is it closed under complementation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems
FSM MODELS

4.1 Let M = (Σ, Ψ, Q, δ, λ, s, F ) be the FSM model described in Definition 3.1.1. It
differs from the FSM model of Section 4.1 in that its output alphabet Ψ has been
explicitly identified. Let this machine recognize the language L(M) consisting of input
strings w that cause the last output produced by M to be the first letter in Ψ. Show
that every language recognized under this definition is a language recognized according
to the “final-state definition” in Definition 4.1.1 and vice versa.

4.2 The Mealy machine is a seven-tuple M = (Σ, Ψ, Q, δ, λ, s, F ) identical in its def-
inition with the Moore machine of Definition 3.1.1 except that its output function
λ : Q×Σ �→ Ψ depends on both the current state and input letter, whereas the output
function λ : Q �→ Ψ of the Moore FSM depends only on the current state. Show that
the two machines recognize the same languages and compute the same functions with
the exception of ε.

4.3 Suppose that an FSM is allowed to make state ε-transitions, that is, state transitions
on the empty string. Show that the new machine model is no more powerful than the
Moore machine model.
Hint: Show how ε-transitions can be removed, perhaps by making the resultant FSM
nondeterministic.

EQUIVALENCE OF DFSMS AND NFSMS

4.4 Functions computed by FSMs are described in Definition 3.1.1. Can a consistent
definition of function computation by NFSMs be given? If not, why not?

4.5 Construct a deterministic FSM equivalent to the nondeterministic FSM shown in
Fig. 4.32.

REGULAR EXPRESSIONS

4.6 Show that the regular expression 0(0∗10∗)+ defines strings starting with 0 and con-
taining at least one 1.

4.7 Show that the regular expressions 0∗, 0(0∗10∗)+, and 1(0 + 1)∗ partition the set of all
strings over 0 and 1.

4.8 Give regular expressions generating the following languages over Σ = {0, 1}:
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Figure 4.32 A nondeterministic FSM.

a) L = {w | w has length at least 3 and its third symbol is a 0}
b) L = {w | w begins with a 1 and ends with a 0}
c) L = {w | w contains at least three 1s}

4.9 Give regular expressions generating the following languages over Σ = {0, 1}:

a) L = {w | w is any string except 11 and 111}
b) L = {w | every odd position of w is a 1}

4.10 Give regular expressions for the languages over the alphabet {0, 1, 2, 3, 4, 5, 6, 7, 8,
9} describing positive integers that are:

a) even

b) odd

c) a multiple of 5

d) a multiple of 4

4.11 Give proofs for the rules stated in Theorem 4.3.1.

4.12 Show that ε+ 01 +(010)(10 + 010)∗(ε+ 1 + 01) and (01 + 010)∗ describe the same
language.

REGULAR EXPRESSIONS AND FSMS

4.13 a) Find a simple nondeterministic finite-state machine accepting the language (01 ∪
001 ∪ 010)∗ over Σ = {0, 1}.

b) Convert the nondeterministic finite state machine of part (a) to a deterministic
finite-state machine by the method of Section 4.2.

4.14 a) Let Σ = {0, 1, 2}, and let L be the language over Σ that contains each string
w ending with some symbol that does not occur anywhere else in w. For exam-
ple, 011012, 20021, 11120, 0002, 10, and 1 are all strings in L. Construct a
nondeterministic finite-state machine that accepts L.
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b) Convert the nondeterministic finite-state machine of part (a) to a deterministic
finite-state machine by the method of Section 4.2.

4.15 Describe an algorithm to convert a regular expression to an NFSM using the proof of
Theorem 4.4.1.

4.16 Design DFSMs that recognize the following languages:

a) a∗bca∗

b) (a + c)∗(ab + ca)b∗

c) (a∗b∗(b + c)∗)∗

4.17 Design an FSM that recognizes decimal strings (over the alphabet {0, 1, 2, 3, 4, 5, 6,
7, 8, 9} representing the integers whose value is 0 modulo 3.

Hint: Use the fact that (10)k = 1 mod 3 (where 10 is “ten”) to show that (ak(10)k +
ak−1(10)k−1 + · · ·+ a1(10)1 + a0) mod 3 = (ak + ak−1 + · · ·+ a1 + a0) mod 3.

4.18 Use the above FSM design to generate a regular expression describing those integers
whose value is 0 modulo 3.

4.19 Describe an algorithm that constructs an NFSM from a regular expression r and accepts
a string w if w contains a string denoted by r that begins anywhere in w.

THE PUMPING LEMMA

4.20 Show that the following languages are not regular:

a) L = {anban | n ≥ 0}
b) L = {0n12n0n | n ≥ 1}
c) L = {anbncn | n ≥ 0}

4.21 Strengthen the pumping lemma for regular languages by demonstrating that if L is
a regular language over the alphabet Σ recognized by a DFSM with m states and it
contains a string w of length m or more, then any substring z of w (w = uzv) of
length m can be written as z = rst, where |s| ≥ 1 such that for all integers n ≥ 0,
ursntv ∈ L. Explain why this pumping lemma is stronger than the one stated in
Lemma 4.5.1.

4.22 Show that the language L = {aibj | i > j} is not regular.

4.23 Show that the following language is not regular:

a) {unzvmzwn+m | n, m ≥ 1}

PROPERTIES OF REGULAR LANGUAGES

4.24 Use Lemma 4.5.1 and the closure property of regular languages under intersection to
show that the following languages are not regular:

a) {wwR | w ∈ {0, 1}∗}
b) {ww | where w denotes w in which 0’s and 1’s are interchanged}
c) {w | w has equal number of 0’s and 1’s}

4.25 Prove or disprove each of the following statements:

a) Every subset of a regular language is regular
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b) Every regular language has a proper subset that is also a regular language

c) If L is regular, then so is {xy | x ∈ L and y �∈ L}
d) If L is a regular language, then so is {w : w ∈ L and wR ∈ L}
e) {w | w = wR} is regular

STATE MINIMIZATION

4.26 Find a minimal-state FSM equivalent to that shown in Fig. 4.33.

4.27 Show that the languages recognized by M and M≡ are the same, where ≡ is the equiv-
alence relation on M defined by states that are indistinguishable by input strings of any
length.

4.28 Show that the equivalence relation RL is right-invariant.

4.29 Show that the equivalence relation RM is right-invariant.

4.30 Show that the right-invariance equivalence relation (defined in Definition 4.7.2) for the
language L = {anbn | n ≥ 0} has an unbounded number of equivalence classes.

4.31 Show that the DFSM in Fig. 4.20 is the machine ML associated with the language
L = (10∗1 + 0)∗.

PUSHDOWN AUTOMATA

4.32 Construct a pushdown automaton that accepts the following language: L = {w | w is
a string over the alphabet Σ = {(, )} of balanced parentheses}.

4.33 Construct a pushdown automaton that accepts the following language: L = {w | w
contains more 1’s than 0’s}.

0

10

0

Start

q3q2

q0 q1

11

0

Figure 4.33 A four-state finite-state machine.
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PHRASE STRUCTURE LANGUAGES

4.34 Give phrase-structure grammars for the following languages:

a) {ww | w ∈ {a, b}∗}
b) {02i | i ≥ 1}

4.35 Show that the following language can be described by a phrase-structure grammar:

{ai | i is not prime}

CONTEXT-SENSITIVE LANGUAGES

4.36 Show that every context-sensitive language can be accepted by a linear bounded au-
tomaton (LBA), a nondeterministic Turing machine in which the tape head visits a
number of cells that is a constant multiple of the number of characters in the input
string w.

Hint: Consider a construction similar to that used in the proof of Theorem 5.4.2.
Instead of using a second tape, use a second track on the tape of the TM.

4.37 Show that every language accepted by a linear bounded automaton can be generated by
a context-sensitive language.

Hint: Consider a construction similar to that used in the proof of Theorem 5.4.1 but
instead of deleting characters at the end of TM configuration, encode the end markers
[ and ] by enlarging the tape alphabet of the LBA to permit the first and last characters
to be either marked or unmarked.

4.38 Show that the grammar G1 in Example 4.9.1 is context-sensitive and generates the
language L(G1) = {anbncn | n ≥ 1}.

4.39 Show that the language {02i | i ≥ 1} is context-sensitive.

4.40 Show that the context-sensitive languages are closed under union, intersection, and
concatenation.

CONTEXT-FREE LANGUAGES

4.41 Show that language generated by the context-free grammar G3 of Example 4.9.3 is
L(G3) = {cancancbmcbmc | n, m ≥ 0}.

4.42 Construct context-free grammars for each of the following languages:

a) {wwR | w ∈ {a, b}∗}
b) {w | w ∈ {a, b}∗, w = wR}
c) L = {w | w has twice as many 0’s as 1’s}

4.43 Give a context-free grammars for each of the following languages:

a) {w ∈ {a, b}∗ | w has twice as many a’s as b’s}
b) {arbs | r ≤ s ≤ 2r}
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REGULAR LANGUAGES

4.44 Show that the regular language G4 described in Example 4.9.4 is L(G4) = (01)∗0.

4.45 Show that grammar G = (N , T ,R, S), where N = {A, B, S}, T = {a, b} and the
rules R are given below, is regular.

a) S → abA

b) S → baB

c) S → B

d) S → ε

e) A → bS

f) B → aS

g) A → b

Give a derivation for the string abbbaa.

4.46 Provide a regular grammar generating strings over {0, 1} not containing 00.

4.47 Give a regular grammar for each of the following languages and show that there is a
FSM that accepts it. In all cases Σ = {0, 1}.

a) L = {w | the length of w is odd}
b) L = {w | w contains at least three 1s}

REGULAR LANGUAGE RECOGNITION

4.48 Construct a finite-state machine that recognizes the language generated by the grammar
G = (N , T ,R, S), where N = {S, X, Y}, T = {x, y}, and R contains the following
rules: S → xX, S → yY, X → yY, Y → xX, X → ε, and Y → ε.

4.49 Describe finite-state machines that recognize the following languages:

a) {w ∈ {a, b}∗ | w has an odd number of a’s}
b) {w ∈ {a, b}∗ | w has ab and ba as substrings}

4.50 Show that, if L is a regular language, then the language obtained by reversing the letters
in each string in L is also regular.

4.51 Show that, if L is a regular language, then the language consisting of strings in L whose
reversals are also in L is regular.

PARSING CONTEXT-FREE LANGUAGES

4.52 Use the algorithm of Theorem 4.11.2 to construct a parse tree for the string (a ∗ b +
a) ∗ (a + b) generated by the grammar G5 of Example 4.11.2, and give a leftmost and
a rightmost derivation for the string.

4.53 Let G = (N , T ,R, S) be the context-free grammar with N = S and T = {(, ), 0}
with rules R = {S → 0, S → SS, S → (S)}. Use the algorithm of Theorem 4.11.2 to
generate a parse tree for the string (0)((0)).

CFL ACCEPTANCE WITH PUSHDOWN AUTOMATA

4.54 Construct PDAs that accept each of the following languages:

a) {anbn | n ≥ 0}
b) {wwR | w ∈ {a, b}∗}
c) {w | w ∈ {a, b}∗, w = wR}
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4.55 Construct PDAs that accept each of the following languages:

a) {w ∈ {a, b}∗ | w has twice as many a’s as b’s}
b) {arbs | r ≤ s ≤ 2r}

4.56 Use the algorithm of Theorem 4.12.2 to construct a context-free grammar that accepts
the language accepted by the PDA in Example 4.8.2.

4.57 Construct a context-free grammar for the language {wcwR | w ∈ {a, b}∗}.
Hint: Use the algorithm of Theorem 4.12.2 to construct a context-free grammar that
accepts the language accepted by the PDA in Example 4.8.1.

PROPERTIES OF CONTEXT-FREE LANGUAGES

4.58 Show that the intersection of a context-free language and a regular language is context-
free.

Hint: From machines accepting the two language types, construct a machine accepting
their intersection.

4.59 Suppose that L is a context-free language and R is a regular one. Is L − R necessarily
context-free? What about R − L? Justify your answers.

4.60 Show that, if L is context-free, then so is LR = {wR | w ∈ L}.
4.61 Let G = (N , T ,R, S) be context-free. A non-terminal A is self-embedding if and

only if A
∗⇒G sAu for some s, u ∈ T .

a) Give a procedure to determine whether A ∈ N is self-embedding.
b) Show that, if G does not have a self-embedding non-terminal, then it is regular.

CFL PUMPING LEMMA

4.62 Show that the following languages are not context-free:

a) {02i | i ≥ 1}
b) {bn2 | n ≥ 1}
c) {0n | n is a prime}

4.63 Show that the following languages are not context-free:

a) {0n1n0n1n | n ≥ 0}
b) {aibjck | 0 ≤ i ≤ j ≤ k}
c) {ww | w ∈ {0, 1}∗}

4.64 Show that the language {ww | w ∈ {a, b}∗} is not context-free.

CFL CLOSURE PROPERTIES

4.65 Let M1 and M2 be pushdown automata accepting the languages L(M1) and L(M2).
Describe PDAs accepting their union L(M1)∪L(M2), concatenation L(M1)·L(M2),
and Kleene closure L(M1)∗, thereby giving an alternate proof of Theorem 4.13.1.

4.66 Use closure under concatenation of context-free languages to show that the language
{wwRvRv | w, v ∈ {a, b}∗} is context-free.
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Chapter Notes
The concept of the finite-state machine is often attributed to McCulloch and Pitts [210].
The models studied today are due to Moore [222] and Mealy [214]. The equivalence of
deterministic and non-deterministic FSMs (Theorem 4.4.1) was established by Rabin and
Scott [265].

Kleene established the equivalence of regular expressions and finite-state machines. The
proof used in Theorems 4.4.1 and 4.4.2 is due to McNaughton and Yamada [211]. The
pumping lemma (Lemma 4.5.1) is due to to Bar-Hillel, Perles, and Shamir [28]. The closure
properties of regular expressions are due to McNaughton and Yamada [211].

State minimization was studied by Huffman [143] and Moore [222]. The Myhill-Nerode
Theorem was independently obtained by Myhill [226] and Nerode [228]. Hopcroft [138] has
given an efficient algorithm for state miminization.

Chomsky [68,69] defined four classes of formal language, the regular, context-free, context-
sensitive, and phrase-structure languages. He and Miller [71] demonstrated the equivalence
of languages generated by regular grammars and those recognized by finite-state machines.
Chomsky introduced the normal form that carries his name [69]. Oettinger [232] introduced
the pushdown automaton and Schutzenberger [304], Chomsky [70], and Evey [96] indepen-
dently demonstrated the equivalence of context-free languages and pushdown automata.

Two efficient algorithms for parsing context-free languages were developed by Earley [93]
and Cocke (unpublished) and independently by Kasami [161] and Younger [370]. These are
cubic-time algorithms. Our formulation of the parsing algorithm of Section 4.11 is based
on Valiant’s derivation [341] of the Cocke-Kasami-Younger recognition matrix, where he also
presents the fastest known general algorithm to parse context-free languages. The CFL pump-
ing lemma and the closure properties of CFLs are due to Bar-Hillel, Perles, and Shamir [28].

Myhill [227] introduced the deterministic linear-bounded automata and Landweber [188]
showed that languages accepted by linear-bounded automata are context-sensitive. Kuroda
[183] generalized the linear-bounded automata to be nondeterministic and established the
equivalence of such machines and the context-sensitive languages.
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