
C H A P T E R

Machines with Memory

As we saw in Chapter 1, every finite computational task can be realized by a combinational
circuit. While this is an important concept, it is not very practical; we cannot afford to design
a special circuit for each computational task. Instead we generally perform computational tasks
with machines having memory. In a strong sense to be explored in this chapter, the memory of
such machines allows them to reuse their equivalent circuits to realize functions of high circuit
complexity.

In this chapter we examine the deterministic and nondeterministic finite-state machine
(FSM), the random-access machine (RAM), and the Turing machine. The finite-state machine
moves from state to state while reading input and producing output. The RAM has a central
processing unit (CPU) and a random-access memory with the property that each memory
word can be accessed in one unit of time. Its CPU executes instructions, reading and writing
data from and to the memory. The Turing machine has a control unit that is a finite-state
machine and a tape unit with a head that moves from one tape cell to a neighboring one in
each unit of time. The control unit reads from, writes to, and moves the head of the tape unit.

We demonstrate through simulation that the RAM and the Turing machine are universal
in the sense that every finite-state machine can be simulated by the RAM and that it and the
Turing machine can simulate each other. Since they are equally powerful, either can be used as
a reference model of computation.

We also simulate with circuits computations performed by the FSM, RAM, and Turing
machine. These circuit simulations establish two important results. First, they show that all
computations are constrained by the available resources, such as space and time. For example,
if a function f is computed in T steps by the RAM with storage capacity S (in bits), then S
and T must satisfy the inequality CΩ(f) = O(ST ), where CΩ(f) is the size of the smallest
circuit for f over the complete basis Ω. Any attempt to compute f on the RAM using space
S and time T whose product is too small will fail. Second, an O(log ST )-space, O(ST )-time
program exists to write the descriptions of circuits simulating the above machines. This fact
leads to the identification in this chapter of the first examples of P-complete and NP-complete
problems.
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92 Chapter 3 Machines with Memory Models of Computation

3.1 Finite-State Machines
The finite-state machine (FSM) has a set of states, one of which is its initial state. At each unit
of time an FSM is given a letter from its input alphabet. This causes the machine to move
from its current state to a potentially new state. While in a state, the FSM produces a letter
from its output alphabet. Such a machine computes the function defined by the mapping
from its initial state and strings of input letters to strings of output letters. FSMs can also be
used to accept strings, as discussed in Chapter 4. Some states are called final states. A string
is recognized (or accepted) by an FSM if the last state entered by the machine on that input
string is a final state. The language recognized (or accepted) by an FSM is the set of strings
accepted by it. We now give a formal definition of an FSM.

DEFINITION 3.1.1 A finite-state machine (FSM) M is a seven-tuple M = (Σ, Ψ, Q, δ, λ, s,
F ), where Σ is the input alphabet, Ψ is the output alphabet, Q is the finite set of states,
δ : Q×Σ "→ Q is the next-state function, λ : Q "→ Ψ is the output function, s is the initial
state (which may be fixed or variable), and F is the set of final states (F ⊆ Q). If the FSM is
given input letter a when in state q, it enters state δ(q, a). While in state q it produces the output
letter λ(q).

The FSM M accepts the string w ∈ Σ∗ if the last state entered by M on the input string w
starting in state s is in the set F . M recognizes (or accepts) the language L consisting of the set
of such strings.

When the initial state of the FSM M is not fixed, for each integer T M maps the initial state
s and its T external inputs w1, w2, . . . , wT onto its T external outputs y1, y2, . . . , yT and the

final state q(T ). We say that in T steps the FSM M computes the function f (T )
M : Q × ΣT "→

Q × ΨT . It is assumed that the sets Σ, Ψ, and Q are encoded in binary so that f (T )
M is a binary

function.

The next-state and output functions of an FSM, δ and λ, can be represented as in Fig. 3.1.
We visualize these functions taking a state value from a memory and an input value from an
external input and producing next-state and output values. Next-state values are stored in the
memory and output values are released to the external world. From this representation an
actual machine (a sequential circuit) can be constructed (see Section 3.3). Once circuits are
constructed for δ and λ, we need only add memory units and a clock to construct a sequential
circuit that emulates an FSM.

δ, λ

Input

Output

Memory

Figure 3.1 The finite-state machine model.
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Figure 3.2 A finite-state machine computing the EXCLUSIVE OR of its inputs.

An example of an FSM is shown in Fig. 3.2. Its input and output alphabets and state
sets are Σ = {0, 1}, Ψ = {0, 1}, and Q = {q0, q1}, respectively. Its next-state and output
functions, δ and λ, are given below.

q σ δ(q, σ)

q0 0 q0

q0 1 q1

q1 0 q1

q1 1 q0

q λ(q)

q0 0
q1 1

The FSM has initial state q0 and final state q1. As a convenience we explicitly identify final
states by shading, although in practice they can be associated with states producing a particular
output letter.

Each state has a label qj/vj , where qj is the name of the state and vj is the output produced
while in this state. The initial state has an arrow labeled with the word “start” pointing to
it. Clearly, the set of strings accepted by this FSM are those containing an odd number of
instances of 1. Thus it computes the EXCLUSIVE OR function on an arbitrary number of
inputs.

While it is conventional to think of the finite-state machine as a severely restricted com-
putational model, it is actually a very powerful one. The random-access machine (RAM)
described in Section 3.4 is an FSM when the number of memory locations that it contains
is bounded, as is always so in practice. When a program is first placed in the memory of
the RAM, the program sets the initial state of the RAM. The RAM, which may or may not
read external inputs or produce external outputs, generally will leave its result in its memory;
that is, the result of the computation often determines the final state of the random-access
machine.

The FSM defined above is called a Moore machine because it was defined by E.F. Moore
[222] in 1956. An alternative FSM, the Mealy machine (defined by Mealy [214] in 1955),
has an output function λ∗ : Q × Σ "→ Ψ that generates an output on each transition from
one state to another. This output is determined by both the state in which the machine resides
before the state transition and the input letter causing the transition. It can be shown that the
two machine models are equivalent (see Problem 3.6): any computation one can do, the other
can do also.
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3.1.1 Functions Computed by FSMs
We now examine the ways in which an FSM might compute a function. Since our goal is to
understand the power and limits of computation, we must be careful not to assume that an
FSM can have hidden access to an external computing device. All computing devices must
be explicit. It follows that we allow FSMs only to compute functions that receive inputs and
produce outputs at data-independent times.

To understand the function computed by an FSM M , observe that in initial state q(0) = s
and receiving input letter w1, M enters state q(1) = δ(q(0), w1) and produces output y1 =
λ(q(1)). If M then receives input w2, it enters state q(2) = δ(q(1), w2) and produces output
y2 = λ(q(2)). Repeated applications of the functions δ and λ on successive states with suc-
cessive inputs, as suggested by Fig. 3.3, generate the outputs y1, y2, . . . , yT and the final state

q(T ). The function f (T )
M : Q×ΣT "→ Q×ΨT given in Definition 3.1.1 defines this mapping

from an initial state and inputs to the final state and outputs:

f (T )
M

(
q(0), w1, w2, . . . , wT

)
=

(
q(T ), y1, y2, . . . , yT

)

This simulation of a machine with memory by a circuit illustrates a fundamental point about
computation, namely, that the role of memory is to hold intermediate results on which the
logical circuitry of the machine can operate in successive cycles.

When an FSM M is used in a T -step computation, it usually does not compute the most

general function f (T )
M that it can. Instead, some restrictions are generally placed on the possible

initial states, on the values of the external inputs provided to M , and on the components of
the final state and output letters used in the computation. Consider three examples of the
specialization of an FSM to a particular task. In the first, let the FSM model be that shown in
Fig. 3.2 and let it be used to form the EXCLUSIVE OR of n variables. In this case, we supply n
bits to the FSM but ignore all but the last output value it produces. In the second example, let
the FSM be a programmable machine in which a program is loaded into its memory before the
start of a computation, thereby setting its initial state. The program ignores all external inputs
and produces no output, leaving the value of the function in memory. In the third example,
again let the FSM be programmable, but let the program that resides initially residing in its
memory be a “boot program” that treats its inputs as program statements. (Thus, the FSM
has a fixed initial state.) The boot program forms a program by loading these statements into
successive memory locations. It then jumps to the first location in this program.

In each of these examples, the function f that is actually computed by M in T steps is

a subfunction of the function f (T )
M because f is obtained by either restricting the values of

yTy2y1

wTw2w1

s
δ, λδ, λ ...q(1) q(2) q(T )δ, λ

Figure 3.3 A circuit computing the same function, f (T )
M , as a finite-state machine M in T

steps.
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the initial state and inputs to M or deleting outputs or both. We assume that every function

computed by M in T steps is a subfunction f of the function f (T )
M .

The simple construction of Fig. 3.3 is the first step in deriving a space-time product in-
equality for the random-access machine in Section 3.5 and in establishing a connection be-
tween Turing time and circuit complexity in Section 3.9.2. It is also involved in the definition
of the P-complete and NP-complete problems in Section 3.9.4.

3.1.2 Computational Inequalities for the FSM
In this book we model each computational task by a function that, we assume without loss

of generality, is binary. We also assume that the function f (T )
M : Q × ΣT "→ Q × ΨT

computed in T steps by an FSM M is binary. In particular, we assume that the next-state
and output functions, δ and λ, are also binary; that is, we assume that their input, state, and
output alphabets are encoded in binary. We now derive some consequences of the fact that a
computation by an FSM can be simulated by a circuit.

The size CΩ

(
f (T )

M

)
of the smallest circuit to compute the function f (T )

M is no larger than

the size of the circuit shown in Fig. 3.3. But this circuit has size T ·CΩ(δ, λ), where CΩ(δ, λ)
is the size of the smallest circuit to compute the functions δ and λ. The depth of the shallowest

circuit for f (T )
M is no more than T · DΩ(δ, λ) because the longest path through the circuit of

Fig. 3.3 has this length.

Let f be the function computed by M in T steps. Since it is a subfunction of f (T )
M ,

it follows from Lemma 2.4.1 that the size of the smallest circuit for f is no larger than the

size of the circuit for f (T )
M . Similarly, the depth of f , DΩ(f), is no more than that of f (T )

M .
Combining the observations of this paragraph with those of the preceding paragraph yields the
following computational inequalities. A computational inequality is an inequality relating
parameters of computation, such as time and the circuit size and depth of the next-state and
output function, to the size or depth of the smallest circuit for the function being computed.

THEOREM 3.1.1 Let f (T )
M be the function computed by the FSM M = (Σ, Ψ, Q, δ, λ, s, F ) in

T steps, where δ and λ are the binary next-state and output functions of M . The circuit size and
depth over the basis Ω of any function f computed by M in T steps satisfy the following inequalities:

CΩ(f) ≤ CΩ

(
f (T )

M

)
≤ TCΩ(δ, λ)

DΩ(f) ≤ DΩ

(
f (T )

M

)
≤ TDΩ(δ, λ)

The circuit size CΩ(δ, λ) and depth DΩ(δ, λ) of the next-state and output functions of an
FSM M are measures of its complexity, that is, of how useful they are in computing functions.
The above theorem, which says nothing about the actual technologies used to realize M , re-
lates these two measures of the complexity of M to the complexities of the function f being
computed. This is a theorem about computational complexity, not technology.

These inequalities stipulate constraints that must hold between the time T and the circuit
size and depth of the machine M if it is used to compute the function f in T steps. Let the
product TCΩ(δ, λ) be defined as the equivalent number of logic operations performed by
M . The first inequality of the above theorem can be interpreted as saying that the number of
equivalent logic operations performed by an FSM to compute a function f must be at least
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the minimum number of gates necessary to compute f with a circuit. A similar interpretation
can be given to the second inequality involving circuit depth.

The first inequality of Theorem 3.1.1 and the interpretation given to T · CΩ(δ, λ) justify
the following definitions of computational work and power. Here power is interpreted as
the time rate at which work is done. These measures correlate nicely with our intuition that
machines that contain more equivalent computing elements are more powerful.

DEFINITION 3.1.2 The computational work done by an FSM M = (Σ, Ψ, Q, δ, λ, s, F ) is
TCΩ(δ, λ), the number of equivalent logical operations performed by M , which is the product of
T , the number of steps executed by M , and CΩ(δ, λ), the size complexity of its next-state and output
functions. The power of an FSM M is CΩ(δ, λ), the number of logical operations performed by
M per step.

Theorem 3.1.1 is also a form of impossibility theorem: it is impossible to compute func-
tions f for which TCΩ(δ, λ) and TDΩ(δ, λ) are respectively less than the size and depth
complexity of f . It may be possible to compute a function on some points of its domain
with smaller values of these parameters, but not on all points. The halting problem, another
example of an impossibility theorem, is presented in Section 5.8.2. However, it deals with the
computation of functions over infinite domains.

The inequalities of Theorem 3.1.1 also place upper limits on the size and depth complex-
ities of functions that can be computed in a bounded number of steps by an FSM, regardless
of how the FSM performs the computation.

Note that there is no guarantee that the upper bounds stated in Theorem 3.1.1 are at all
close to the lower bounds. It is always possible to compute a function inefficiently, that is, with
resources that are greater than the minimal resources necessary.

3.1.3 Circuits Are Universal for Bounded FSM Computations
We now ask whether the classes of functions computed by circuits and by FSMs executing
a bounded number of steps are different. We show that they are the same. Many different

functions can be computed from the function f (T )
M by specializing inputs and/or deleting

outputs.

THEOREM 3.1.2 Every subfunction of the function f (n)
M computable by an FSM on n inputs is

computable by a Boolean circuit and vice versa.

Proof A Boolean function on n inputs, f , may be computed by an FSM with 2n+1 − 1
states by branching from the current state to one of two different states on inputs 0 and 1
until all n inputs have been read; it then produces the output that would be produced by f
on these n inputs. A fifteen-state version of this machine that computes the EXCLUSIVE OR

on three inputs as a subfunction is shown in Fig. 3.4.
The proof in the other direction is also straightforward, as described above and repre-

sented schematically in Fig. 3.3. Given a binary representation of the input, output, and state
symbols of an FSM, their associated next-state and output functions are binary functions.

They can be realized by circuits, as can f (n)
M (s, w) = (q(n), y), the function computed by

the FSM on n inputs, as suggested by Fig. 3.3. Finally, the subfunction f is obtained by
fixing the appropriate inputs, assigning variable names to the remaining inputs, and deleting
the appropriate outputs.
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Figure 3.4 A fifteen-state FSM that computes the EXCLUSIVE OR of three inputs as a subfunc-

tion of f (3)
M obtained by deleting all outputs except the third.

3.1.4 Interconnections of Finite-State Machines
Later in this chapter we examine a family of FSMs characterized by a computational unit
connected to storage devices of increasing size. The random-access machine that has a CPU
of small complexity and a random-access memory of large but indeterminate size is of this
type. The Turing machine having a fixed control unit that moves a tape head over a potentially
infinite tape is another example.

This idea is captured by the interconnection of synchronous FSMs. Synchronous FSMs
read inputs, advance from state to state, and produce outputs in synchronism. We allow two
or more synchronous FSMs to be interconnected so that some outputs from one FSM are
supplied as inputs of another, as illustrated in Fig. 3.5. Below we generalize Theorem 3.1.1 to
a pair of synchronous FSMs. We model random-access machines and Turing machines in this
fashion when each uses a finite amount of storage.

THEOREM 3.1.3 Let f (T )
M1×M2

be a function computed in T steps by a pair of interconnected syn-
chronous FSMs, M1 = (Σ1, Ψ1, Q1, δ1, λ1, s1, F1) and M2 = (Σ2, Ψ2, Q2, δ2, λ2, s2, F2).

OutputOutput

M2M1

Input

Input

Figure 3.5 The interconnection of two finite-state machines in which one of the three outputs
of M1 is supplied as an input to M2 and two of the three outputs of M2 are supplied to M1 as
inputs.
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Figure 3.6 A circuit simulating T steps of the two synchronous interconnected FSMs shown
in Fig. 3.5. The top row of circuits simulates a T -step computation by M1 and the bottom row
simulates a T -step computation by M2. One of the three outputs of M1 is supplied as an input
to M2 and two of the three outputs of M2 are supplied to M1 as inputs. The states of M1 on the
initial and T successive steps are q0, q1, . . . , qT . Those of M2 are p0, p1, . . . , pT .

Let CΩ(δ, λ) and DΩ(δ, λ) be the size and depth of encodings of the next-state and output func-
tions. Then, the circuit size and depth over the basis Ω of any function f computed by the pair

M1 ×M2 in T steps (that is, a subfunction of f (T )
M1×M2

) satisfy the following inequalities:

CΩ(f) ≤ T [CΩ(δ1, λ1) + CΩ(δ2, λ2)]

DΩ(f) ≤ T [max(DΩ(δ1, λ1), DΩ(δ2, λ2))]

Proof The construction that leads to this result is suggested by Fig. 3.6. We unwind both
FSMs and connect the appropriate outputs from one to the other to produce a circuit that

computes f (T )
M1×M2

. Observe that the number of gates in the simulated circuit is T times the
sum of the number of gates, whereas the depth is T times the depth of the deeper circuit.

3.1.5 Nondeterministic Finite-State Machines
The finite-state machine model described above is called a deterministic FSM (DFSM) be-
cause, given a current state and an input, the next state of the FSM is uniquely determined.
A potentially more general FSM model is the nondeterministic FSM (NFSM) characterized
by the possibility that several next states can be reached from the current state for some given
input letter.

One might ask if such a model has any use, especially since to the untrained eye a non-
deterministic machine would appear to be a dysfunctional deterministic one. The value of an
NFSM is that it may recognize languages with fewer states and in less time than needed by a
DFSM. The concept of nondeterminism will be extended later to the Turing machine, where
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it is used to classify languages in terms of the time and space they need for recognition. For
example, it will be used to identify the class NP of languages that are recognized by nondeter-
ministic Turing machines in a number of steps that is polynomial in the length of their inputs.
(See Section 3.9.6.) Many important combinatorial problems, such as the traveling salesperson
problem, fall into this class.

The formal definition of the NFSM is given in Section 4.1, where the next-state function
δ : Q × Σ "→ Q of the FSM is replaced by a next-state function δ : Q × Σ "→ 2Q. Such
functions assign to each state q and input letter a a subset δ(q, a) of the set Q of states of the
NFSM (2Q, the power set, is the set of all subsets of Q. It is introduced in Section 1.2.1.)
Since the value of δ(q, a) can be the empty set, there may be no successor to the state q on
input a. Also, since δ(q, a) when viewed as a set can contain more than one element, a state
q can have edges labeled a to several other states. Since a DFSM has a single successor to each
state on every input, a DFSM is an NFSM in which δ(q, a) is a singleton set.

While a DFSM M accepts a string w if w causes M to move from the initial state to a
final state in F , an NFSM accepts w if there is some set of next-state choices for w that causes
M to move from the initial state to a final state in F .

An NFSM can be viewed as a purely deterministic finite-state machine that has two inputs,
as suggested in Fig. 3.7. The first, the standard input, a, accepts the user’s data. The second,
the choice input, c, is used to choose a successor state when there is more than one. The in-
formation provided via the choice input is not under the control of the user supplying data via
the standard input. As a consequence, the machine is nondeterministic from the point of view
of the user but fully deterministic to an outside observer. It is assumed that the choice agent
supplies the choice input and, with full knowledge of the input to be provided by the user,
chooses state transitions that, if possible, lead to acceptance of the user input. On the other
hand, the choice agent cannot force the machine to accept inputs for which it is not designed.

In an NFSM it is not required that a state q have a successor for each value of the standard
and choice inputs. This possibility is captured by allowing δ(q, a, c) to have no value, denoted
by δ(q, a, c) =⊥.

Figure 3.8 shows an NFSM that recognizes strings over B∗ that end in 00101. In this
figure parentheses surround the choice input when its value is needed to decide the next state.
In this machine the choice input is set to 1 when the choice agent knows that the user is about
to supply the suffix 00101.

δ, λ

Memory

Output

Standard Input

Choice Input

Figure 3.7 A nondeterministic finite-state machine modeled as a deterministic one that has a
second choice input whose value disambiguates the value of the next state.
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q0 q1 q2 q3 q4 q5

Start

0(1) 0 1 0 1

0(0), 1

Figure 3.8 A nondeterministic FSM that accepts binary strings ending in 00101. Choice
inputs are shown in parentheses for those user inputs for which the value of choice inputs can
disambiguate next-state moves.

q0

Start

0(1), 1(1)
q5

0(0), 1(0)

Figure 3.9 An example of an NFSM whose choice agent (its values are in parentheses) accepts
not only strings in a language L, but all strings.

Although we use the anthropomorphic phrase “choice agent,” it is important to note that
this choice agent cannot freely decide which strings to accept and which not. Instead, it must
when possible make choices leading to acceptance. Consider, for example, the machine in
Fig. 3.9. It would appear that its choice agent can accept strings in an arbitrary language L. In
fact, the language that it accepts contains all strings.

Given a string w in the language L accepted by an NFSM, a choice string that leads to its
acceptance is said to be a succinct certificate for its membership in L.

It is important to note that the nondeterministic finite-state machine is not a model of
reality, but is used instead primarily to classify languages. In Section 4.1 we explore the
language-recognition capability of the deterministic and nondeterministic finite-state machines
and show that they are the same. However, the situation is not so clear with regard to Turing
machines that have access to unlimited storage capacity. In this case, we do not know whether
or not the set of languages accepted in polynomial time on deterministic Turing machines (the
class P) is the same set of languages that is accepted in polynomial time by nondeterministic
Turing machines (the class NP).

3.2 Simulating FSMs with Shallow Circuits*
In Section 3.1 we demonstrated that every T -step FSM computation can be simulated by
a circuit whose size and depth are both O(T ). In this section we show that every T -step
finite-state machine computation can be simulated by a circuit whose size and depth are O(T )
and O(log T ), respectively. While this seems a serious improvement in the depth bound, the
coefficients hidden in the big-O notation for both bounds depend on the number of states of
the FSM and can be very large. Nevertheless, for simple problems, such as binary addition, the
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Figure 3.10 A finite-state machine that adds two binary numbers. Their two least significant
bits are supplied first followed by those of increasing significance. The output bits represent the
sum of the two numbers.

results of this section can be useful. We illustrate this here for binary addition by exhibiting
small and shallow circuits for the adder FSM of Fig. 3.10. The circuit simulation for this
FSM produces the carry-lookahead adder circuit of Section 2.7. In this section we use matrix
multiplication, which is covered in Chapter 6.

The new method is based on the representation of the function f (T )
M : Q×ΣT "→ Q×ΨT

computed in T steps by an FSM M = (Σ, Ψ, Q, δ, λ, s, F ) in terms of the set of state-to-
state mappings S = {h : Q "→ Q} where S contains the mappings {∆x : Q "→ Q |x ∈ Σ}
and ∆x is defined below.

∆x(q) = δ(q, x) (3.1)

That is, ∆x(q) is the state to which state q is carried by the input letter x.
The FSM shown in Fig. 3.10 adds two binary numbers sequentially by simulating a ripple

adder. (See Section 2.7.) Its input alphabet is B2, that is, the set of pairs of 0’s and 1’s. Its
output alphabet is B and its state set is Q = {q0, q1, q2, q3}. (A sequential circuit for this
machine is designed in Section 3.3.) It has the state-to-state mappings shown in Fig. 3.11.

Let * : S2 "→ S be the operator defined on the set S of state-to-state mappings where for
arbitrary h1, h2 ∈ S and state q ∈ Q the operator * is defined as follows:

(h1 * h2)(q) = h2(h1(q)) (3.2)

q ∆0,0(q)

q0 q0

q1 q0

q2 q1

q3 q1

q ∆0,1(q)

q0 q1

q1 q1

q2 q2

q3 q2

q ∆1,0(q)

q0 q1

q1 q1

q2 q2

q3 q2

q ∆1,1(q)

q0 q2

q1 q2

q2 q3

q3 q3

Figure 3.11 The state-to-state mappings associated with the FSM of Fig. 3.10.
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The state-to-state mappings in S will be obtained by composing the mappings {∆x : Q "→
Q |x ∈ Σ} using this operator.

Below we show that the operator * is associative, that is, * satisfies the property (h1 *
h2) * h3 = h1 * (h2 * h3). This means that for each q ∈ Q, ((h1 * h2) * h3)(q) =
(h1 * (h2 * h3))(q) = h3(h2(h1(q))). Applying the definition of * in Equation (3.2), we
have the following for each q ∈ Q:

((h1 * h2)* h3)(q) = h3((h1 * h2)(q))

= h3(h2(h1(q))) (3.3)

= (h2 * h3)(h1(q))

= (h1 * (h2 * h3))(q)

Thus, * is associative and (S,*) is a semigroup. (See Section 2.6.) It follows that a prefix
computation can be done on a sequence of state-to-state mappings.

We now use this observation to construct a shallow circuit for the function f (T )
M . Let w =

(w1, w2, . . . , wT ) be a sequence of T inputs to M where wj is supplied on the jth step. Let
q(j) be the state of M after receiving the jth input. From the definition of * it follows that
q(j) has the following value where s is the initial state of M :

q(j) = (∆w1 *∆w2 * · · ·*∆wj )(s)

The value of f (T )
M on initial state s and T inputs can be represented in terms of q = (q(1), . . . ,

q(T )) as follows:

f (T )
M (s, w) =

(
q(n), λ(q(1)), λ(q(2)), . . . , λ(q(T ))

)

Let Λ(T ) be the following sequence of state-to-state mappings:

Λ(T ) = (∆w1 , ∆w2 , . . . , ∆wT )

It follows that q can be obtained by computing the state-to-state mappings ∆w1*∆w2* · · ·*
∆wj , 1 ≤ j ≤ T , and applying them to the initial state s. Because * is associative, these T

state-to-state mappings are produced by the prefix operator P(T )
# on the sequence Λ(T ) (see

Theorem 2.6.1):

P(T )
# (Λ(T )) = (∆w1 , (∆w1 *∆w2), . . . , (∆w1 *∆w2 * . . .*∆wT ))

Restating Theorem 2.6.1 for this problem, we have the following result.

THEOREM 3.2.1 For T = 2k, k an integer, the T state-to-state mappings defined by the T inputs
to an FSM M can be computed by a circuit over the basis Ω = {*} whose size and depth satisfy
the following bounds:

CΩ

(
P(T )
#

)
≤ 2T − log2 T − 2

DΩ

(
P(T )
#

)
≤ 2 log2 T
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The construction of a shallow Boolean circuit for f (T )
M is reduced to a five-step problem: 1)

for each input letter x design a circuit whose input and output are representations of states and
which defines the state-to-state mapping ∆x for input letter x; 2) construct a circuit for the
associative operator * that accepts the representations of two state-to-state mappings ∆y and
∆z and produces a representation for the state-to-state mapping ∆y *∆z ; 3) use the circuit
for* in a parallel prefix circuit to produce the T state-to-state mappings; 4) construct a circuit
that combines the representation of the initial state s with that of the state-to-state mapping
∆w1 *∆w2 * · · ·*∆wj to obtain a representation for the successor state ∆w1 *∆w2 * · · ·*
∆wj (s); and 5) construct a circuit for λ that computes an output from the representation of a
state.

We now describe a generic, though not necessarily efficient, implementation of these steps.
Let Q = {q0, q1, . . . , q|Q|−1} be the states of M . The state-to-state mapping ∆x for the

FSM M needed for the first step can be represented by a |Q| ×| Q| Boolean matrix N(x) =
{nij(x)} in which the entry in row i and column j, nij(x), satisfies

ni,j(x) =

{
1 if M moves from state qi to state qj on input x

0 otherwise

Consider again the FSM shown in Fig. 3.10. The matrices associated with its four pairs of
inputs x ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} are shown below, where N((0, 1)) = N((1, 0)):

N((0, 0)) =





1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0




N((0, 1)) =





0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0





N((1, 1)) =





0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1





From these matrices the generic matrix N((u, v)) parameterized by the values of the inputs (a
pair (u, v) in this example) is produced from the following Boolean functions: t = u ∧ v, the
carry-terminate function, p = u ⊕ v, the carry-propagate function, and g = u ∧ v, the
carry-generate function.

N((u, v)) =





t p g 0

t p g 0

0 t p g

0 t p g





Let σ(i) = (0, 0, . . . , 0, 1, 0, . . .0) be the unit |Q|-vector that has value 1 in the ith position
and zeros elsewhere. Let σ(i)N(x) denote Boolean vector-matrix multiplication in which ad-
dition is OR and multiplication is AND. Then, for each i, σ(i)N(x) = (ni,1, ni,2, . . . , ni,|Q|)
is the unit vector denoting the state that M enters when it is in state qi and receives input x.
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Let N(x, y) = N(x)×N(y) be the Boolean matrix-matrix multiplication of matrices N(x)
and N(y) in which addition is OR and multiplication is AND. Then, for each x and y the entry

in row i and column j of N(x)×N(y), namely n(2)
i,j (x, y), satisfies the following identity:

n(2)
i,j (x, y) =

∨

qt∈Q

ni,t(x) · nt,j(y)

That is, n(2)
i,j (x, y) = 1 if there is a state qt ∈ Q such that in state qi, M is given input x,

moves to state qt, and then moves to state qj on input y. Thus, the composition operator *
can be realized through the multiplication of Boolean matrices. It is straightforward to show
that matrix multiplication is associative. (See Problem 3.10.)

Since matrix multiplication is associative, a prefix computation using matrix multiplica-
tion as a composition operator for each prefix x(j) = (x1, x2, . . . , xj) of the input string x
generates a matrix N(x(j)) = N(x1) × N(x2) × · · · × N(xj) defining the state-to-state
mapping associated with x(j) for each value of 1 ≤ j ≤ n.

The fourth step, the application of a sequence of state-to-state mappings to the initial state
s = qr, represented by the |Q|-vector σ(r), is obtained through the vector-matrix multiplica-
tion σ(r)N(x(j)) for 1 ≤ j ≤ n.

The fifth step involves the computation of the output word from the current state. Let
the column |Q|-vector λ contain in the tth position the output of the FSM M when in state
qt. Then, the output produced by the FSM after the jth input is the product σ(r)N(x(j))λ.
This result is summarized below.

THEOREM 3.2.2 Let the finite-state machine M = (Σ, Ψ, Q, δ, λ, s, F ) with |Q| states compute

a subfunction f of f (T )
M in T steps. Then f has the following size and depth bounds over the

standard basis Ω0 for some κ ≥ 1:

CΩ0(f) = O (Mmatrix(|Q|, κ)T )

DΩ0(f) = O ((κ log |Q|)(log T ))

Here Mmatrix(n, κ) is the size of a circuit to multiply two n× n matrices with a circuit of depth
κ log n. These bounds can be achieved simultaneously.

Proof The circuits realizing the Boolean functions {ni,j(x) | 1 ≤ i, j ≤ |Q|}, x an
input, each have a size determined by the size of the input alphabet Σ, which is constant.
The number of operations required to multiply two Boolean matrices with a circuit of depth
κ log |Q|, κ ≥ 1, is Mmatrix(|Q|, κ). (See Section 6.3. Note that Mmatrix(|Q|, κ) ≤ |Q|3.)
Finally, the prefix circuit uses O(T ) copies of the matrix multiplication circuit and has a
depth of O(log T ) copies of the matrix multiplication circuit along the longest path. (See
Section 2.6.)

When an FSM has a large number of states but its next-state function is relatively simple,
that is, it has a size that is at worst a polynomial in log |Q|, the above size bound will be much
larger than the size bound given in Theorem 3.1.1 because Mmatrix(n, κ) grows exponentially
in log |Q|. The depth bound grows linearly with log |Q| whereas the depth of the next-
state function on which the depth bound of Theorem 3.1.1 depends will typically grow either
linearly or as a small polynomial in log log |Q| for an FSM with a relatively simple next-state
function. Thus, the depth bound will be smaller than that of Theorem 3.1.1 for very large
values of T , but for smaller values, the latter bound will dominate.
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3.2.1 A Shallow Circuit Simulating Addition
Applying the above result to the adder FSM of Fig. 3.10, we produce a circuit that accepts
T pairs of binary inputs and computes the sum as T -bit binary numbers. Since this FSM
has four states, the theorem states that the circuit has size O(T ) and depth O(log T ). The
carry-lookahead adder of Section 2.7 has these characteristics.

We can actually produce the carry-lookahead circuit by a more careful design of the state-
to-state mappings. We use the following encodings for states, where states are represented by
pairs {(c, s)}.

State Encoding

q c s

q0 0 0
q1 0 1
q2 1 0
q3 1 1

Since the next-state mappings are the same for inputs 0, 1, and 1, 0, we encode an input
pair (u, v) by (g, p), where g = u ∧ v and p = u ⊕ v are the carry-generate and carry-
propagate variables introduced in Section 2.7 and used above. With these encodings, the three
different next-state mappings {∆0,0, ∆0,1, ∆1,1} defined in Fig. 3.11 can be encoded as shown
in the table below. The entry at the intersection of row (c, s) and column (p, g) in this table
is the value (c∗, s∗) of the generic next-state function (c∗, s∗) = ∆p,g(c, s). (Here we abuse
notation slightly to let ∆p,g denote the state-to-state mapping associated with the pair (u, v)
and represent the state q of M by the pair (c, s).)

g 0 0 1
p 0 1 0

c s c∗ s∗ c∗ s∗ c∗ s∗

0 0 0 0 0 1 1 0
0 1 0 0 0 1 1 0
1 0 0 1 1 0 1 1
1 1 0 1 1 0 1 1

Inspection of this table shows that we can write the following formulas for c∗ and s∗:

c∗ = (p ∧ c) ∨ g, s∗ = p⊕ c

Consider two successive input pairs (u1, v1) and (u2, v2) and associated pairs (p1, g1) and
(p2, g2). If the FSM of Fig. 3.10 is in state (c0, s0) and receives input (u1, v1), it enters the
state (c1, s1) = (p1 ∧ c0 ∨ g1, p1 ⊕ c0). This new state can be obtained by combining p1 and
g1 with c0. Let (c2, s2) be the successor state when the mapping ∆p2,g2 is applied to (c1, s1).
The effect of the operator * on successive state-to-state mappings ∆p1,g1 and ∆p2,g2 is shown
below, in which (3.2) is used:

(∆p1,g1 *∆p2,g2)(q) = ∆p2,g2(∆p1,g1((c0, s0)))

= ∆p2,g2(p1 ∧ c0 ∨ g1, p1 ⊕ c0)
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= (p2 ∧ (p1 ∧ c0 ∨ g1) ∨ g2, p2 ⊕ (p1 ∧ c0 ∨ g1))

= ((p2 ∧ p1) ∧ c0 ∨ (g2 ∨ p2 ∧ g1)), p2 ⊕ (p1 ∧ c0 ∨ g1))

= (c2, s2)

It follows that c2 can be computed from p∗ = p2 ∧ p1 and g∗ = g2 ∨ p2 ∧ g1 and c0. The
value of s2 is obtained from p2 and c1. Thus the mapping ∆p1,g1*∆p2,g2 is defined by p∗ and
g∗, quantities obtained by combining the pairs (p1, g1) and (p2, g2) using the same associative
operator / defined for the carry-lookahead adder in Section 2.7.1.

To summarize, the state-to-state mappings corresponding to subsequences of an input
string ((u0, v0), (u1, v1), . . . , (un−2, vn−2), (un−1, vn−1)) can be computed by representing
this string by the carry-propagate, carry-generate string ((p0, g0), (p1, g1), . . . , (pn−2, gn−2),
(pn−1, gn−1)), computing the prefix operation on this string using the operator /, then com-
puting ci from c0 and the carry-propagate and carry-generate functions for the ith stage and si

from this carry-propagate function and ci−1. This leads to the carry-lookahead adder circuit
of Section 2.7.1.

3.3 Designing Sequential Circuits
Sequential circuits are concrete machines constructed of gates and binary memory devices.
Given an FSM, a sequential machine can be constructed for it, as we show.

A sequential circuit is constructed from a logic circuit and a collection of clocked binary
memory units, as suggested in Figs. 3.12(a) and 3.15. (Shown in Fig. 3.12(a) is a simple
sequential circuit that computes the EXCLUSIVE OR of the initial value in memory and the
external input to the sequential circuit.) Inputs to the logic circuit consist of outputs from the
binary memory units as well as external inputs. The outputs of the logic circuit serve as inputs
to the clocked binary memory units as well as external outputs.

A clocked binary memory unit is driven by a clock, a periodic signal that has value 1 (it is
high) during short, uniformly spaced time intervals and is otherwise 0 (it is low), as suggested
in Figs. 3.12(b). For correct operation it is assumed that the input to a memory unit does not
change when the clock is high. Thus, the outputs of a logic circuit feeding the memory units
cannot change during these intervals. This in turn requires that all changes in the inputs to

(a)

x

M

Clock

s

(b)

Clock

Time

1

0

Figure 3.12 (a) A sequential circuit with one gate and one clocked memory unit computing
the EXCLUSIVE OR of its inputs; (b) a periodic clock pattern.
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this circuit be fully propagated to its outputs in the intervals when the clock is low. A circuit
that operates this way is considered safe. Designers of sequential circuits calculate the time for
signals to pass through a logic circuit and set the interval between clock pulses to insure that
the operation of the sequential circuit is safe.

Sequential circuits are designed from finite-state machines (FSMs) in a series of steps.
Consider an FSM M = (Σ, Ψ, Q, δ, λ, s) with input alphabet Σ, output alphabet Ψ, state
set Q, next-state function δ : Q × Σ "→ Q, output function λ : Q "→ Ψ, and initial state s.
(For this discussion we ignore the set of final states; they are important only when discussing
language recognition.) We illustrate the design of a sequential machine using the FSM of
Fig. 3.10, which is repeated in Fig. 3.13.

The first step in producing a sequential circuit from an FSM is to assign unique binary
tuples to each input letter, output letter, and state (the state-assignment problem). This is
illustrated for our FSM by the tables of Fig. 3.14 in which the identity encoding is used on
inputs and outputs. This step can have a large impact on the size of the logic circuit produced.
Second, tables for δ : B4 "→ B2 and λ : B2 "→ B, the next-state and output functions of
the FSM, respectively, are produced from the description of the FSM, as shown in the same
figure. Here c∗ and s∗ represent the successor to the state (c, s). Third, circuits are designed
that realize the binary functions associated with c∗ and s∗. Fourth and finally, these circuits are
connected to clocked binary memory devices, as shown in Fig. 3.15, to produce a sequential
circuit that realizes the FSM. We leave to the reader the task of demonstrating that these circuits
compute the functions defined by the tables. (See Problem 3.11.)

Since gates and clocked memory devices can be constructed from semiconductor materials,
a sequential circuit can be assembled from physical components by someone skilled in the use
of this technology. We design sequential circuits in this book to obtain upper bounds on the
size and depth of the next-state and output functions of a sequential machine so that we can
derive computational inequalities.

q2/0

q3/1

q0/0Start

0001, 10 11
00

11

01, 10 00 11

01, 1000 11

q1/1

01, 10

Figure 3.13 A finite-state machine that simulates the ripple adder of Fig. 2.14. It is in state qr

if the carry-and-sum pair (cj+1, sj) generated by the jth full adder of the ripple adder represents
the integer r, 0 ≤ r ≤ 3. The output produced is the sum bit.
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Input Encoding

σ ∈ Σ u v

0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Output Encoding

λ(q) ∈ Ψ λ(q)

0 0
1 1

State Encoding

q c s

q0 0 0
q1 0 1
q2 1 0
q3 1 1

δ : B4 "→ B2

c s u v c∗ s∗

0 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 1
1 1 0 0 0 1
0 0 0 1 0 1
0 1 0 1 0 1
1 0 0 1 1 0
1 1 0 1 1 0
0 0 1 0 0 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 1 0 1 0
0 0 1 1 1 0
0 1 1 1 1 0
1 0 1 1 1 1
1 1 1 1 1 1

λ : B2 "→ B
c∗ s∗ s
0 0 0
0 1 1
1 0 0
1 1 1

Figure 3.14 Encodings for inputs, outputs, states, and the next-state and output functions of
the FSM adder.

s

c

p

u v

g

s∗

c∗

Clock

M

M

Figure 3.15 A sequential circuit for the FSM that adds binary numbers.
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3.3.1 Binary Memory Devices
It is useful to fix ideas about memory units by designing one (a latch) from logic gates. We
use two latchs to create a flip-flop, the standard binary storage device. A collection of clocked
flip-flops is called a register. A clocked latch can be constructed from a few AND and NOT

gates, as shown in Fig. 3.16(a). The NAND gates (they compute NOT of AND) labeled g3 and
g4 form the heart of the latch. Consider the inputs to g3 and g4, the lines connected to the
outputs of NAND gates g1 and g2. If one is set to 1 and the other reset to 0, after all signals
settle down, ρ and ρ∗ will assume complementary values (one will have value 1 and the other
will have value 0), regardless of their previous values. The gate with input 1 will assume output
0 and vice versa.

Now if the outputs of g1 and g2 are both set to 1 and the values previously assumed by ρ
and ρ∗ are complementary, these values will be retained due to the feedback between g3 and
g4, as the reader can verify. Since the outputs of g1 and g2 are both 1 when the clock input
(CLK in Fig. 3.16) has value 0, the complementary outputs of g3 and g4 remain unchanged
when the clock is low. Since the outputs of a latch provide inputs to the logic-circuit portion
of a sequential circuit, it is important that the latch outputs remain constant when the clock
is low.

When the clock input is 1, the outputs of g1 and g2 are S and R, the Boolean complements
of S and R. If S and R are complementary, as is true for this latch since R = S, this device
will store the value of S in ρ and its complement in ρ∗. Thus, if S = 1, the latch is set to 1,
whereas if R = 1 (and S = 0) it is reset to 0. This type of device is called a D-type latch. For
this reason we change the name of the external input to this memory device from S to D.

Because the output of the D-type latch shown in Fig. 3.16(a) changes when the clock pulse
is high, it cannot be used as a stable input to a logic circuit that feeds this or another such flip-
flop. Adding another stage like the first but having the complementary value for the clock
pulse, as shown in Fig. 3.16(b), causes the output of the second stage to change only while the
clock pulse is low. The output of the first stage does change when the clock pulse is high to
record the new value of the state. This is called a master-slave edge-triggered flip-flop. Other
types of flip-flop are described in texts on computer architecture.

(b)

g4

g3

(a)

g1

g2

D = S

R

CLK CLK
ρ∗

ρ ρ

ρ∗

Figure 3.16 (a) Design of a D-type latch from NAND gates. (b) A master-slave edge-triggered
D-type flip-flop.
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3.4 Random-Access Machines
The random-access machine (RAM) models the essential features of the traditional serial
computer. The RAM is modeled by two synchronous interconnected FSMs, a central process-
ing unit (CPU) and a random-access memory. (See Fig. 3.17.) The CPU has a small number
of storage locations called registers whereas the random-access memory has a large number.
All operations performed by the CPU are performed on data stored in its registers. This is done
for efficiency; no increase in functionality is obtained by allowing operations on data stored in
memory locations as well.

3.4.1 The RAM Architecture
The CPU implements a fetch-and-execute cycle in which it alternately reads an instruction
from a program stored in the random-access memory (the stored-program concept) and ex-
ecutes it. Instructions are read and executed from consecutive locations in the random-access
memory unless a jump instruction is executed, in which case an instruction from a non-
consecutive location is executed next.

A CPU typically has five basic kinds of instruction: a) arithmetic and logical instructions of
the kind described in Sections 2.5.1, 2.7, 2.9, and 2.10, b) memory load and store instructions
for moving data between memory locations and registers, c) jump instructions for breaking
out of the current program sequence, d) input and output (I/O) instructions, and e) a halt
instruction.

The basic random-access memory has an output word (out wrd) and three input words,
an address (addr), a data word (in wrd), and a command (cmd). The command specifies
one of three actions, a) read from a memory location, b) write to a memory location, or c)
do nothing. Reading from address addr deposits the value of the word at this location into
out wrd whereas writing to addr replaces the word at this address with the value of in wrd.

addr

in wrd

out wrd

b

ALU

rega

regb

CPU

cmd

Random-Access Memory

m− 1
m− 2

1

0

Decode

prog ctr

Figure 3.17 The random-access machine has a central processing unit (CPU) and a random-
access memory unit.
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This memory is called random-access because the time to access a word is the same for all
words. The Turing machine introduced in Section 3.7 has a tape memory in which the time
to access a word increases with its distance from the tape head.

The random-access memory in the model in Fig. 3.17 has m = 2µ storage locations each
containing a b-bit word, where µ and b are integers. Each word has a µ-bit address and the
addresses are consecutive starting at zero. The combination of this memory and the CPU
described above is the bounded-memory RAM. When no limit is placed on the number and
size of memory words, this combination defines the unbounded-memory RAM. We use the
term RAM for these two machines when context unambiguously determines which is intended.

DESIGN OF A SIMPLE CPU The design of a simple CPU is given in Section 3.10. (See
Fig. 3.31.) This CPU has eight registers, a program counter (PC), accumulator (AC), mem-
ory address register (MAR), memory data register (MDR), operation code (opcode) regis-
ter (OPC), input register (INR), output register (OUTR), and halt register (HALT). Each
operation that requires two operands, such as addition or vector AND, uses AC and MDR as
sources for the operands and places the result in AC. Each operation with one operand, such
as the NOT of a vector, uses AC as both source and destination for the result. PC contains the
address of the next instruction to be executed. Unless a jump instruction is executed, PC is
incremented on the execution of each instruction. If a jump instruction is executed, the value
of PC is changed. Jumps occur in our simple CPU if AC is zero.

To fetch the next instruction, the CPU copies PC to MAR and then commands the
random-access memory to read the word at the address in MAR. This word appears in MDR.
The portion of this word containing the identity of the opcode is transferred to OPC. The
CPU then inspects the value of OPC and performs the small local operations to execute the
instruction represented by it. For example, to perform an addition it commands the arith-
metic/logical unit (ALU) to combine the contents of MDR and AC in an adder circuit and
deposit the result in AC. If the instruction is a load accumulator instruction (LDA), the CPU
treats the bits other than opcode bits as address bits and moves them to the MAR. It then com-
mands the random-access memory to deposit the word at this address in MDR, after which it
moves the contents of MDR to AC. In Section 3.4.3 we illustrate programming in an assembly
language, the language of a machine enhanced by mnemonics and labels. We further illustrate
assembly-language programming in Section 3.10.4 for the instruction set of the machine de-
signed in Section 3.10.

3.4.2 The Bounded-Memory RAM as FSM
As this discussion illustrates, the CPU and the random-access memory are both finite-state
machines. The CPU receives input from the random-access memory as well as from external
sources. Its output is to the memory and the output port. Its state is determined by the
contents of its registers. The random-access memory receives input from and produces output
to the CPU. Its state is represented by an m-tuple (w0, w1, . . . , wm−1) of b-bit words, one
per memory location, as well as by the values of in wrd, out word, and addr. We say that
the random-access memory has a storage capacity of S = mb bits. The RAM has input and
output registers (not shown in Fig. 3.17) through which it reads external inputs and produces
external outputs.

As the RAM example illustrates, some FSMs are programmable. In fact, a program stored
in the RAM memory selects one of very many state sequences that the RAM may execute. The
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number of states of a RAM can be very large; just the random-access memory alone has more
than 2S states.

The programmability of the unbounded-memory RAM makes it universal for FSMs, as
we show in Section 3.4.4. Before taking up this subject, we pause to introduce an assembly-
language program for the unbounded-memory RAM. This model will play a role in Chapter 5.

3.4.3 Unbounded-Memory RAM Programs
We now introduce assembly-language programs to make concrete the use of the RAM. An
assembly language contains one instruction for each machine-level instruction of a CPU. How-
ever, instead of bit patterns, it uses mnemonics for opcodes and labels as symbolic addresses.
Labels are used in jump instructions.

Figure 3.18 shows a simple assembly language. It implements all the instructions of the
CPU defined in Section 3.10 and vice versa if the CPU has a sufficiently long word length.

Our new assembly language treats all memory locations as equivalent and calls them reg-
isters. Thus, no distinction is made between the memory locations in the CPU and those
in the random-access memory. Such a distinction is made on real machines for efficiency: it
is much quicker to access registers internal to a CPU than memory locations in an external
random-access memory.

Registers are used for data storage and contain integers. Register names are drawn from the
set {R0, R1, R2, . . .}. The address of register Ri is i. Thus, both the number of registers and
their size are potentially unlimited. All registers are initialized with the value zero. Registers
used as input registers to a program are initialized to input values. Results of a computation
are placed in output registers. Such registers may also serve as input registers. Each instruc-
tion may be given a label drawn from the set {N0, N1, N2, . . .}. Labels are used by jump
instructions, as explained below.

Instruction Meaning

INC Ri Increment the contents of Ri by 1.

DEC Ri Decrement the contents of Ri by 1.

CLR Ri Replace the contents of Ri with 0.

Ri ← Rj Replace the contents of Ri with those of Rj .

JMP+ Ni Jump to closest instruction above current one with label Ni.

JMP− Ni Jump to closest instruction below current one with label Ni.

Rj JMP+ Ni If Rj contains 0, jump to closest instruction above
current one with label Ni.

Rj JMP− Ni If Rj contains 0, jump to closest instruction below
current one with label Ni.

CONTINUE Continue to next instruction; halt if none.

Figure 3.18 The instructions in a simple assembly language.
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The meaning of each instruction should be clear except possibly for the CONTINUE and
JUMP. If the program reaches a CONTINUE statement other than the last CONTINUE, it
executes the following instruction. If it reaches the last CONTINUE statement, the program
halts.

The jump instructions Rj JMP+ Ni, Rj JMP− Ni, JMP+ Ni, and JMP− Ni cause a
break in the program sequence. Instead of executing the next instruction in sequence, they
cause jumps to instructions with labels Ni. In the first two cases these jumps occur only when
the content of register Rj is zero. In the last two cases, these jumps occur unconditionally.
The instructions with JMP+ (JMP−) cause a jump to the closest instruction with label Ni

above (below) the current instruction. The use of the suffixes + and − permit the insertion of
program fragments into an existing program without relabeling instructions.

A RAM program is a finite sequence of assembly language instructions terminated with
CONTINUE. A valid program is one for which each jump is to an existing label. A halting
program is one that halts.

TWO RAM PROGRAMS We illustrate this assembly language with the two simple programs
shown in Fig. 3.19. The first adds two numbers and the second uses the first to square a
number. The heading of each program explains its operation. Registers R0 and R1 contain the
initial values on which the addition program operates. On each step it increments R0 by 1 and
decrements R1 by 1 until R1 is 0. Thus, on completion, the value of R0 is its original value
plus the value of R1 and R1 contains 0.

The squaring program uses the addition program. It makes three copies of the initial value
x of R0 and stores them in R1, R2, and R3. It also clears R0. R2 will be used to reset R1 to x
after adding R1 to R0. R3 is used as a counter and decremented x times, after which x is added
to zero x times in R0; that is, x2 is computed.

R0 ← R0 + R1 Comments

N0 R1 JMP− N1 End if R1 = 0
INC R0 Increment R0

DEC R1 Decrement R1

JMP+ N0 Repeat
N1 CONTINUE

R0 ← R2
0 Comments

R2 ← R0 Copy R0 (x) to R2

R3 ← R0 Copy R0 (x) to R3

CLR R0 Clear the contents of R0

N2 R1 ← R2 Copy R2 (x) to R1

N0 R1 JMP− N1 R0 ← R0 + R1

INC R0

DEC R1

JMP+ N0

N1 CONTINUE

DEC R3 Decrement R3

R3 JMP− N3 End when zero
JMP+ N2 Add x to R0

N3 CONTINUE

Figure 3.19 Two simple RAM programs. The first adds two integers stored initially in registers
R0 and R1, leaving the result in R0. The second uses the first to square the contents of R0, leaving
the result in R0.
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As indicated above, with large enough words each of the above assembly-language instruc-
tions can be realized with a few instructions from the instruction set of the CPU designed in
Section 3.10. It is also true that each of these CPU instructions can be implemented by a
fixed number of instructions in the above assembly language. That is, with sufficiently long
memory words in the CPU and random-access memory, the two languages allow the same
computations with about the same use of time and space.

However, the above assembly-language instructions are richer than is absolutely essential
to perform all computations. In fact with just five assembly-language instructions, namely
INC, DEC, CONTINUE, Rj JMP+ Ni, and Rj JMP− Ni, all the other instructions can be
realized. (See Problem 3.21.)

3.4.4 Universality of the Unbounded-Memory RAM
The unbounded-memory RAM is universal in two senses. First, it can simulate any finite-
state machine including another random-access machine, and second, it can execute any RAM
program.

DEFINITION 3.4.1 A machine M is universal for a class of machines C if every machine in C can
be simulated by M . (A stronger definition requiring that M also be in C is used in Section 3.8.)

We now show that the RAM is universal for the class C of finite-state machines. We show
that in O(T ) steps and with constant storage capacity S the RAM can simulate T steps of any
other FSM. Since any random-access machine that uses a bounded amount of memory can be
described by a logic circuit such as the one defined in Section 3.10, it can also be simulated by
the RAM.

THEOREM 3.4.1 Every T-step FSM M = (Σ, Ψ, Q, δ, λ, s, F ) computation can be simulated
by a RAM in O(T ) steps with constant space. Thus, the RAM is universal for finite-state machines.

Proof We sketch a proof. Since an FSM is characterized completely by its next-state and
output functions, both of which are assumed to be encoded by binary functions, it suffices to
write a fixed-length RAM program to perform a state transition, generate output, and record
the FSM state in the RAM memory using the tabular descriptions of the next-state and
output functions. This program is then run repeatedly. The amount of memory necessary
for this simulation is finite and consists of the memory to store the program plus one state
(requiring at least log2 |Q| bits). While the amount of storage and time to record and
compute these functions is constant, they can be exponential in log2 |Q| because the next-
state and output functions can be a complex binary function. (See Section 2.12.) Thus, the
number of steps taken by the RAM per FSM state transition is constant.

The second notion of universality is captured by the idea that the RAM can execute RAM
programs. We discuss two execution models for RAM programs. In the first, a RAM program
is stored in a private memory of the RAM, say in the CPU. The RAM alternates between
reading instructions from its private memory and executing them. In this case the registers
described in Section 3.4.3 are locations in the random-access memory. The program counter
either advances to the next instruction in its private memory or jumps to a new location as a
result of a jump instruction.

In the second model (called by some [10] the random-access stored program machine
(RASP)), a RAM program is stored in the random-access memory itself. A RAM program
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can be translated to a RASP program by replacing the names of RAM registers by the names
of random-access memory locations not used for storing the RAM program. The execution
of a RASP program directly parallels that of the RAM program; that is, the RASP alternates
between reading instructions and executing them. Since we do not consider the distinction
between RASP and RAM significant, we call them both the RAM.

3.5 Random-Access Memory Design
In this section we model the random-access memory described in Section 3.4 as an FSM
MRMEM(µ, b) that has m = 2µ b-bit data words, w0, w1, . . . , wm−1, as well as an input
data word d (in wrd), an input address a (addr), and an output data word z (out wrd). (See
Fig. 3.20.) The state of this FSM is the concatenation of the contents of the data, input and
output words, input address, and the command word. We construct an efficient logic circuit
for its next-state and transition function.

To simplify the design of the FSM MRMEM we use the following encodings of the three
input commands:

Name s1 s0

no-op 0 0
read 0 1
write 1 0

An input to MRMEM is a binary (µ + b + 2)-bit binary tuple, two bits to represent a
command, µ bits to specify an address, and b bits to specify a data word. The output function
of MRMEM, λRMEM, is a simple projection operator and is realized by a circuit without any
gates. Applied to the state vector, it produces the output word.

We now describe a circuit for δRMEM, the next-state function of MRMEM. Memory words
remain unchanged if either no-op or read commands are executed. In these cases the value
of the command bit s1 is 0. One memory word changes if s1 = 1, namely, the one whose

wm−1

wm−1

wm−1

wm−1

cmd

b

out wrd

in wrd

addr

Figure 3.20 A random-access memory unit MRMEM that holds m b-bit words. Its inputs
consist of a command (cmd), an input word (in wrd), and an address (addr). It has one output
word (out wrd).
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address is a. Thus, the memory words w0, w1, . . . , wm−1 change only when s1 = 1. The
word that changes is determined by the µ-bit address a supplied as part of the input. Let
aµ−1, . . . , a1, a0 be the µ bits of a. Let these bits be supplied as inputs to an µ-bit decoder

function f (µ)
decode (see Section 2.5.4). Let ym−1, . . . , y1, y0 be the m outputs of a decoder

circuit. Then, the Boolean function ci = s1yi (shown in Fig. 3.21(a)) is 1 exactly when
the input address a is the binary representation of the integer i and the FSM MRMEM is
commanded to write the word d at address a.

Let w∗
0 , w∗

1 , . . . , w∗
m−1 be the new values for the memory words. Let w∗

i,j and wi,j be the
jth components of w∗

i and wi, respectively. Then, for 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ b− 1 we
write w∗

i,j in terms of wi,j and the jth component dj of d as follows:

ci = s1yi

w∗
i,j = ciwi,j ∨ cidj

Figures 3.21(a) and (b) show circuits described by these formulas. It follows that changes

to memory words can be realized by a circuit containing CΩ

(
f (µ)
decode

)
gates for the decoder,

m gates to compute all the terms ci, 0 ≤ i ≤ m−1, and 4mb gates to compute w∗
i,j , 0 ≤ i ≤

m− 1, 0 ≤ j ≤ b− 1 (NOTs are counted). Combining this with Lemma 2.5.4, we have that

......

......y0 ∧ w0,j

f (µ)
decode

(a) (b)

yi ∧ wi,j

uj

aµ−1 aµ−2 a0 y1 ∧ w1,j ym−1 ∧ wm−1,j

w∗
i,j

ci

wi,js1

dj

yi ∧ wi,j

y2 ∧ w2,j

z∗j

s0 zj s0

yiym−1 y0

wi,j

Figure 3.21 A circuit that realizes the next-state and output function of the random-access
memory. The circuit in (a) computes the next values {w∗

i,j} for components of memory words,
whereas that in (b) computes components {z∗

i } of the output word. The output yj ∧ wi,j of (a)
is an input to (b).
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a circuit realizing this portion of the next-state function has at most m(4b+2)+(2µ−2)
√

m
gates. The depth of this portion of the circuit is the depth of the decoder plus 4 because the
longest path between an input and an output w∗

0 , w∗
1 , . . . , w∗

m−1 is through the decoder and
then through the gates that form ciwi,j . This depth is at most 2log2 µ3+ 5.

The circuit description is complete after we give a circuit to compute the output word z.
The value of z changes only when s0 = 1, that is, when a read command is issued. The jth
component of z, namely zj , is replaced by the value of wi,j , where i is the address specified by
the input a. Thus, the new value of zj , z∗j , can be represented by the following formula (see
the circuit of Fig. 3.21(b)):

z∗j = s0zj ∨ s0

(
m−1∨

k=0

ykwk,j

)
for 0 ≤ j ≤ b− 1

Here
∨

denotes the OR of the m terms ykwk,j , m = 2µ. It follows that for each value of
j this portion of the circuit can be realized with m two-input AND gates and m− 1 two-input
OR gates (to form

∨
) plus four additional operations. Thus, it is realized by an additional

(2m + 3)b gates. The depth of this circuit is the depth of the decoder (2log µ3 + 1) plus
µ = log2 m, the depth of a tree of m inputs to form

∨
, plus three more levels. Thus, the

depth of the circuit to produce the output word is µ + 2log2 µ3+ 4.
The size of the complete circuit for the next-state function is at most m(6b + 2) + (2µ−

2)
√

m + 3b. Its depth is at most µ + 2log2 µ3+ 4. We state these results as a lemma.

LEMMA 3.5.1 The next-state and output functions of the FSM MRMEM(µ, b), δRMEM and
λRMEM, can be realized with the following size and depth bounds over the standard basis Ω0,
where S = mb is its storage capacity in bits:

CΩ0(δRMEM, λRMEM) ≤ m(6b + 2) + (2µ− 2)
√

m + 3b = O(S)

DΩ0(δRMEM, λRMEM) ≤ µ + 2log2 µ3+ 4 = O(log(S/b))

Random-access memories can be very large, so large that their equivalent number of logic
elements (which we see from the above lemma is proportional to the storage capacity of the
memory) is much larger than the tens to hundreds of thousands of logic elements in the CPUs
to which they are attached.

3.6 Computational Inequalities for the RAM
We now state computational inequalities that apply for all computations on the bounded-
memory RAM. Since this machine consists of two interconnected synchronous FSMs, we
invoke the inequalities of Theorem 3.1.3, which require bounds on the size and depth of the
next-state and output functions for the CPU and the random-access memory.

From Section 3.10.6 we see that size and depth of these functions for the CPU grow slowly
in the word length b and number of memory words m. In Section 3.5 we designed an FSM
modeling an S-bit random-access memory and showed that the size and depth of its next-state
and output functions are proportional to S and log S, respectively. Combining these results,
we obtain the following computational inequalities.
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THEOREM 3.6.1 Let f be a subfunction of f (T ,m,b)
RAM , the function computed by the m-word, b-bit

RAM with storage capacity S = mb in T steps. Then the following bounds hold simultaneously
over the standard basis Ω0 for logic circuits:

CΩ0(f) = O(ST )

DΩ0(f) = O(T log S)

The discussion in Section 3.1.2 of computational inequalities for FSMs applies to this the-
orem. In addition, this theorem demonstrates the importance of the space-time product, ST ,
as well as the product T log S. While intuition may suggest that ST is a good measure of the
resources needed to solve a problem on the RAM, this theorem shows that it is a fundamental
quantity because it directly relates to another fundamental complexity measure, namely, the
size of the smallest circuit for a function f . Similar statements apply to the second inequality.

It is important to ask how tight the inequalities given above are. Since they are both derived
from the inequalities of Theorem 3.1.1, this question can be translated into a question about
the tightness of the inequalities of this theorem. The technique given in Section 3.2 can be
used to tighten the second inequality of Theorem 3.1.1 so that the bounds on circuit depth
can be improved to logarithmic in T without sacrificing the linearity of the bound on circuit
size. However, the coefficients on these bounds depend on the number of states and can be
very large.

3.7 Turing Machines
The Turing machine model is the classical model introduced by Alan Turing in his famous
1936 paper [337]. No other model of computation has been found that can compute func-
tions that a Turing machine cannot compute. The Turing machine is a canonical model of
computation used by theoreticians to understand the limits on serial computation, a topic
that is explored in Chapter 5. The Turing machine also serves as the primary vehicle for the
classification of problems by their use of space and time. (See Chapter 8.)

The (deterministic) one-tape, bounded-memory Turing machine (TM) consists of two
interconnected FSMs, a control unit and a tape unit of potentially unlimited storage capacity.

210

Unit

m− 1

Control

Tape Unit

b

Figure 3.22 A bounded-memory one-tape Turing machine.
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(It is shown schematically in Fig. 3.22.) At each unit of time the control unit accepts input
from the tape unit and supplies output to it. The tape unit produces the value in the cell
under the head, a b-bit word, and accepts and writes a b-bit word to that cell. It also accepts
commands to move the head one cell to the left or right or not at all. The bounded-memory
tape unit is an array of m b-bit cells and has a storage capacity of S = mb bits. A formal
definition of the one-tape deterministic Turing machine is given below.

DEFINITION 3.7.1 A standard Turing machine (TM) is a six-tuple M = (Γ, β, Q, δ, s, h),
where Γ is the tape alphabet not containing the blank symbol β, Q is the finite set of states,
δ : Q × (Γ ∪ {β}) "→ (Q ∪ {h}) × (Γ ∪ {β})× {L, N, R} is the next-state function, s is
the initial state, and h 5∈ Q is the accepting halt state. A TM cannot exit from h. If M is in
state q with letter a under the tape head and δ(q, a) = (q′, a′, C), its control unit enters state q′

and writes a′ in the cell under the head, and moves the head left (if possible), right, or not at all if
C is L, R, or N, respectively.

The TM M accepts the input string w ∈ Γ∗ (it contains no blanks) if, when started in
state s with w placed left-adjusted on its otherwise blank tape and the tape head at the leftmost
tape cell, the last state entered by M is h. If M has other halting states (states from which it does
not exit) these are rejecting states. Also, M may not halt on some inputs.

M accepts the language L(M) consisting of all strings accepted by M . If a Turing machine
halts on all inputs, we say that it recognizes the language that it accepts. For simplicity, we
assume that when M halts during language acceptance it writes the letter 1 in its first tape cell if its
input string is accepted and 0 otherwise.

The function computed by a Turing machine on input string w is the string z written
leftmost on the non-blank portion of the tape after halting. The function computed by a TM is
partial if the TM fails to halt on some input strings and complete otherwise.

Thus, a TM performs a computation on input string w, which is placed left-adjusted on
its tape by placing its head over the leftmost symbol of w and repeatedly reading the symbol
under the tape head, making a state change in its control unit, and producing a new symbol
for the tape cell and moving the head left or right by one cell or not at all. The head does not
move left from the leftmost tape cell. If a TM is used for language acceptance, it accepts w by
halting in the accepting state h. If the TM is used for computation, the result of a computation
on input w is the string z that remains on the non-blank portion of its tape.

We require that M store the letter 1 or 0 in its first tape cell when halting during language
acceptance to simplify the construction of a circuit simulating M in Section 3.9.1. This re-
quirement is not essential because the fact that M has halted in state h can be detected with a
simple circuit.

The multi-tape Turing machine is a generalization of this model that has multiple tape
units. (These models and limits on their ability to solve problems are examined in Chapter 5,
where it is shown that the multi-tape TM is no more powerful than the one-tape TM.) Al-
though in practice a TM uses a bounded number of memory locations, the full power of TMs
is realized only when they have access to an unbounded number of tape cells.

Although the TM is much more limited than the RAM in the flexibility with which it can
access memory, given sufficient time and storage capacity they both compute exactly the same
set of functions, as we show in Section 3.8.

A very important class of languages recognized by TMs is the class P of polynomial-time
languages.
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DEFINITION 3.7.2 A language L ⊆ Γ∗ is in P if there is a Turing machine M with tape alphabet
Γ and a polynomial p(n) such that, for every w ∈ Γ∗, a) M halts in p(|w|) steps and b) M
accepts w if and only if it is in L.

The class P is said to contain all the “feasible” languages because any language requiring
more than a polynomial number of steps for its recognition is thought to require so much time
for long strings as not to be recognizable in practice.

A second important class of languages is NP, the languages accepted in polynomial time
by nondeterministic Turing machines. To define this class we introduce the nondeterministic
Turing machines.

3.7.1 Nondeterministic Turing Machines
A nondeterministic Turing machine (NDTM) is identical to the standard TM except that
its control unit has an external choice input. (See Fig. 3.23.)

DEFINITION 3.7.3 A non-deterministic Turing machine (NDTM) is the extension of the TM
model by the addition of a choice input to its control unit. Thus an NDTM is a seven-tuple
M = (Σ, Γ, β, Q, δ, s, h), where Σ is the choice input alphabet, Γ is the tape alphabet not
containing the blank symbol β, Q is the finite set of states, s is the initial state, and h 5∈ Q
is the accepting halt state. A TM cannot exit from h. When M is in state q with letter a under
the tape head, reading choice input c, its next-state function δ : Q × Σ × (Γ ∪ {β}) "→
(Q ∪ {h}) × (Γ ∪ {β}) × {L, R, N}∪ ⊥ has value δ(q, c, a). If δ(q, c, a) =⊥, there is no
successor to the current state with choice input c and tape symbol a. If δ(q, c, a) = (q′, a′, C), M ’s
control unit enters state q′, writes a′ in the cell under the head, and moves the head left (if possible),
right, or not at all if C is L, R, or N, respectively. The choice input selects possible transitions on
each time step.

An NDTM M reads one character of its choice input string c ∈ Σ∗ on each step. An
NDTM M accepts string w if there is some choice string c such that the last state entered by M is
h when M is started in state s with w placed left-adjusted on its otherwise blank tape and the tape
head at the leftmost tape cell. We assume that when M halts during language acceptance it writes
the letter 1 in its first tape cell if its input string is accepted and 0 otherwise.

An NDTM M accepts the language L(M) ⊆ Γ∗ consisting of those strings w that it accepts.
Thus, if w 5∈ L(M), there is no choice input for which M accepts w.

Note that the choice input c associated with acceptance of input string w is selected with full
knowledge of w. Also, note that an NDTM does not accept any string not in L(M); that is,
for no choice inputs does it accept such a string.

The NDTM simplifies the characterization of languages. It is used in Section 8.10 to
characterize the class NP of languages accepted in nondeterministic polynomial time.

DEFINITION 3.7.4 A language L ⊆ Γ∗ is in NP if there is a nondeterministic Turing machine
M and a polynomial p(n) such that M accepts L and for each w ∈ L there is a choice input c
such that M on input w with this choice input halts in p(|w|) steps.

A choice input is said to “verify” membership of a string in a language. The particular
string provided by the choice agent is a verifier for the language. The languages in NP are thus
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Figure 3.23 A nondeterministic Turing machine modeled as a deterministic one whose control
unit has an external choice input that disambiguates the value of its next state.

easy to verify: they can be verified in a polynomial number of steps by a choice input string of
polynomial length.

The class NP contains many important problems. The Traveling Salesperson Problem
(TSP) is in this class. TSP is a set of strings of the following kind: each string contains an
integer n, the number of vertices (cities) in an undirected graph G, as well as distances between
every pair of vertices in G, expressed as integers, and an integer k such that there is a path that
visits each city once, returning to its starting point (a tour), whose length is at most k. A
verifier for TSP is an ordering of the vertices such that the total distance traveled is no more
than k. Since there are n! orderings of the n vertices and n! is approximately

√
2πnnne−n, a

verifier can be found in a number of steps exponential in n; the actual verification itself can be
done in O(n2) steps. (See Problem 3.24.) NP also contains many other important languages,
in particular, languages defining important combinatorial problems.

While it is obvious that P is a subset of NP, it is not known whether they are the same.
Since for each language L in NP there is a polynomial p such that for each string w in L
there is a verifying choice input c of length p(|w|), a polynomial in the length of w, the
number of possible choice strings c to be considered in search of a verifying string is at most
an exponential in |w|. Thus, for every language in NP there is an exponential-time algorithm
to recognize it.

Despite decades of research, the question of whether P is equal to NP, denoted P
?
= NP,

remains open. It is one of the great outstanding questions of computer science today. The
approach taken to this question is to identify NP-complete problems (see Section 8.10), the
hardest problems in NP, and then attempt to determine problems whether or not such prob-
lems are in P. TSP is one of these NP-complete problems.

3.8 Universality of the Turing Machine
We show the existence of a universal Turing machine in two senses. On the one hand, we show
that there is a Turing machine that can simulate any RAM computation. Since every Turing
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machine can be simulated by the RAM, the Turing machine simulating a RAM is universal for
the set of all Turing machines.

Also, because there is a Turing machine that can simulate any RAM computation, every
RAM program can be simulated on this Turing machine. Since it is not hard to see that every
Turing machine can be described by a RAM program (see Problem 3.29), it follows that the
RAM programs are exactly the programs computed by Turing machines. Consequently, the
RAM is also universal.

The following theorem demonstrates that RAM computations can be simulated by Turing-
machine computations and vice versa when each operates with bounded memory. Note that
all halting computations are bounded-memory computations. A direct proof of the existence
of a universal Turing machine is given in Section 5.5.

THEOREM 3.8.1 Let S = mb and m ≥ b. Then for every m-word, b-bit Turing machine MTM

(with storage capacity S) there is an O(m)-word, b-bit RAM that simulates a time T computation
of MTM in time O(T ) and storage O(S). Similarly, for every m-word, b-bit RAM MRAM

there is an O((m/b) log m)-word, O(b)-bit Turing machine that simulates a T-time, S-storage
computation of MRAM in time O(ST log2 S) and storage O(S log S).

Proof We begin by describing a RAM that simulates a TM. Consider a b-bit RAM program
to simulate an m-word, b-bit TM. As shown in Theorem 3.4.1, a RAM program can be
written to simulate one step of an FSM. Since a TM control unit is an FSM, it suffices to
exhibit a RAM program to simulate a tape unit (also an FSM); this is straightforward, as
is combining the two programs. If the RAM has storage capacity proportional to that of
the TM, then the RAM need only record with one additional word the position of the tape
head. This word, which can be held in a RAM register, is incremented or decremented as
the head moves. The resulting program runs in time proportional to the running time of
the TM.

We now describe a b∗-bit TM that simulates a RAM, where b∗ = 2log m3 + b + c for
some constant c, an assumption we examine later. Let RAM words and their corresponding
addresses be placed in individual cells on the tape of the TM, as suggested in Fig. 3.24. Let
the address addr of the RAM CPU program counter be placed on the tape of the TM to the
left, as suggested by the shading in the figure. (It is usually assumed that, unlike the RAM,
the TM holds words of size no larger than O(b) in its control unit.) The TM simulates
a RAM by simulating the RAM fetch-and-execute cycle. This means it fetches a word at
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Figure 3.24 Organization of a tape unit to simulate a RAM. Each RAM memory word wj is
accompanied by its address j in binary.
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address addr in the simulated RAM memory unit, interprets it as an instruction, and then
executes the instruction (which might require a few additional accesses to the memory unit
to read or write data). We return to the simulation of the RAM CPU after we examine the
simulation of the RAM memory unit.

The TM can find a word at location addr as follows. It reads the most significant bit
of addr and moves right on its tape until it finds the first word with this most significant
bit. It leaves a marker at this location. (The symbol ♦ in Fig. 3.24 identifies the first place
a marker is left.) It then returns to the left-hand end of the tape and obtains the next most
significant bit of addr. It moves back to the marker ♦ and then carries this marker forward
to the next address containing the next most significant bit (identified by the marker ♠ in
Fig. 3.24). This process is repeated until all bits of addr have been visited, at which point
the word at location addr in the simulated RAM is found. Since m tape unit cells are used
in this simulation, at most O(m log m) TM steps are taken for this purpose.

The TM must also simulate internal RAM CPU computations. Each addition, sub-
traction, and comparison of b-bit words can be done by the TM control unit in a constant
number of steps, as can the logical vector operations. (For simplicity, we assume that the
RAM does not use its I/O registers. To simulate these operations, either other tapes would
be used or space would be reserved on the single tape to hold input and output words.) The
jump instructions as well as the incrementing of the program counter require moving and
incrementing 2log m3-bit addresses. These cannot be simulated by the TM control unit
in a constant number of steps since it can only operate on b-bit words. Instead, they are
simulated on the tape by moving addresses in b-bit blocks. If two tape cells are separated
by q − 1 cells, 2q steps are necessary to move each block of b bits from the first cell to the
second. Thus, a full address can be moved in 2q22log m3/b3 steps. An address can also
be incremented using ripple addition in 22log m3/b3 steps using operations on b-bit words,
since the blocks of an address are contiguous. (See Section 2.7 for a discussion of ripple
addition.) Thus, both of these address-manipulation operations can be done in at most
O(m22log m3/b3) steps, since no two words are separated by more than O(m) cells.

Now consider the general case of a TM with word size comparable to that of the RAM,
that is, a size too small to hold an address as well as a word. In particular, consider a TM with

b̂-bit tape alphabet where b̂ = cb, c > 1 a constant. In this case, we divide addresses into⌈
2log m3/b̂

⌉
b̂-bit words and place these words in locations that precede the value of the

RAM word at this address, as suggested in Fig. 3.40. We also place the address addr at the
beginning of the tape in the same number of tape words. A total of O((m/b)(logm)) O(b)-
bit words are used to store all this data. Now assume that the TM can carry the contents of

a b̂-bit word in its control unit. Then, as shown in Problem 3.26, the extra symbols in the
TM’s tape alphabet can be used as markers to find a word with a given address in at most
O((m/b)(log2 m)) TM steps using storage O((m/b) log m). Hence each RAM memory
access translates into O((m/b)(log2 m)) TM steps on this machine.

Simulation of the CPU on this machine is straightforward. Again, each addition, sub-
traction, comparison, and logical vector operation on b-bit words can be done in a constant
number of steps. Incrementing of the program counter can also be done in 22log m3/b3
operations since the cells containing this address are contiguous. However, since a jump op-
eration may require moving an address by O(m) cells in the b∗-bit TM, it may now require

moving it by O(m(log m)/b) cells in the b̂-bit TM in O
(
m ((log m)/b)2

)
steps.
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Combining these results, we see that each step of the RAM may require as many as

O((m((logm)/b)2) steps of the b̂-bit TM. This machine uses storage O((m/b) log m).
Since m = S/b, the conclusion of the theorem follows.

This simulation of a bounded-memory RAM by a Turing machine assumes that the RAM
has a fixed number of memory words. Although this may appear to prevent an unbounded-
memory TM from simulating an unbounded-memory RAM, this is not the case. If the Turing
machine detects that an address contains more than the number of bits currently assumed
as the maximum number, it can increase by 1 the number of bits allocated to each memory
location and then resume computation. To make this adjustment, it will have to space out the
memory words and addresses to make space for the extra bits. (See Problem 3.28.)

Because a Turing machine with no limit on the length of its tape can be simulated by a
RAM, this last observation demonstrates the existence of universal Turing machines, Tur-
ing machines with unbounded memory (but with fixed-size control units and bounded-size
tape alphabets) that can simulate arbitrary Turing machines. This matter is also treated in
Section 5.5.

Since the RAM can execute RAM programs, the same is true of the Turing machines. As
mentioned above, it is not hard to see that every Turing machine can be simulated by a RAM
program. (See Problem 3.29.) As a consequence, the RAM programs are exactly the programs
that can be computed by a Turing machine.

While the above remarks apply to the one-tape Turing machine, they also apply to all other
Turing machine models, such as double-ended and multi-tape Turing machines, because each
of these can also be simulated by the one-tape Turing machine. (See Section 5.2.)

3.9 Turing Machine Circuit Simulations
Just as every T-step finite-state machine computation can be simulated by a circuit, so can
every T-step Turing machine computation. We give two circuit simulations, a simple one that
demonstrates the concept and another more complex one that yields a smaller circuit. We use
these two simulations in Sections 3.9.5 and 3.9.6 to establish computational inequalities that
must hold for Turing machines. With a different interpretation they provide examples of P-
complete and NP-complete problems. (See also Sections 8.9 and 8.10.) These results illustrate
the central role of circuits in theoretical computer science.

3.9.1 A Simple Circuit Simulation of TM Computations
We now design a circuit simulating a computation of a Turing machine M that uses m memory
cells and T steps. Since the only difference between a deterministic and nondeterministic
Turing machine is the addition of a choice input to the control unit, we design a circuit for a
nondeterministic Turing machine.

For deterministic computations, the circuit simulation provides computational inequalities
that must be satisfied by computational resources, such as space and time, if a problem is to be
solved by M . Such an inequality is stated at the end of this section.

With the proper interpretation, the circuit simulation of a deterministic computation is an
instance of a P-complete problem, one of the hardest problems in P to parallelize. Here P is
the class of polynomial-time languages. A first P-complete problem is stated in the following
section. This topic is studied in detail in Section 8.9.
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For nondeterministic computations, the circuit simulation produces an instance of an NP-
complete problem, a hardest problem to solve in NP. Here NP is the class of languages accepted
in polynomial time by a nondeterministic Turing machine. A first NP-complete problem is
stated in the following section. This topic is studied in detail in Section 8.10.

THEOREM 3.9.1 Any computation performed by a one-tape Turing machine M , deterministic or
nondeterministic, on an input string w in T steps using m b-bit memory cells can be simulated
by a circuit CM ,T over the standard complete basis Ω of size and depth O(ST ) and O(T log S),
respectively, where S = mb is the storage capacity in bits of M ’s tape. For the deterministic TM
the inputs to this circuit consist of the values of w. For the nondeterministic TM the inputs consist
of w and the Boolean choice input variables whose values are not set in advance.

Proof To construct a circuit CM ,T simulating T steps by M is straightforward because M
is a finite-state machine now that its storage capacity is limited. We need only extend the
construction of Section 3.1.1 and construct a circuit for the next-state and output functions
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Figure 3.25 The circuit CM ,T simulates an m-cell, T -step computation by a nondeterministic
Turing machine M . It contains T copies of M ’s control unit circuit and T column circuits, Ct,
each containing cell circuits Cj,t, 0 ≤ j ≤ m−1, 1 ≤ t ≤ T , simulating the jth tape cell on the
tth time step. qt and ct are M ’s state on the tth step and its tth set of choice variables. Also, aj,t

is the value in the jth cell on the tth step, sj,t is 1 if the head is over cell j at the tth time step, and
vj,t is aj,t if sj,t = 1 and 0 otherwise. vt, the vector OR of vj,t, 0 ≤ j ≤ m − 1, supplies the
value under the head to the control unit, which computes head movement commands, ht, and
a new word, wt, for the current cell in the next simulated time step. The value of the function
computed by M resides on its tape after the T th step.



126 Chapter 3 Machines with Memory Models of Computation

of M . As shown in Fig. 3.25, it is convenient to view M as a pair of synchronous FSMs
(see Section 3.1.4) and design separate circuits for M ’s control and tape units. The design
of the circuit for the control unit is straightforward since it is an unspecified NFSM. The
tape circuit, which realizes the next-state and output functions for the tape unit, contains
m cell circuits, one for each cell on the tape. We denote by Ct(m), 1 ≤ t ≤ T , the tth tape
circuit. We begin by constructing a tape circuit and determining its size and depth.

For 0 ≤ j ≤ m and 1 ≤ t ≤ T let Cj,t be the jth cell circuit of the tth tape circuit,
Ct(m). Cj,t produces the value aj,t contained in the jth cell after the jth step as well as
sj,t, whose value is 1 if the head is over the jth tape cell after the tth step and 0 otherwise.
The value of aj,t is either aj,t−1 if sj,t = 0 (the head is not over this cell) or w if sj,t = 1
(the head is over the cell). Subcircuit SC2 of Fig. 3.26 performs this computation.

Subcircuit SC1 in Fig. 3.26 computes sj,t from sj−1,t−1, sj,t−1, sj+1,t−1 and the triple
ht = (h−1

t , h0
t , h+1

t ), where h−1
t = 1 if the head moves to the next lower-numbered cell,

h+1
t = 1 if it moves to the next higher-numbered cell, or h0

t = 1 if it does not move. Thus,
sj,t = 1 if sj+1,t−1 = 1 and h−1

t = 1, or if sj−1,t−1 and h+1
t = 1, or if sj,t−1 = 1 and

h0
t = 1. Otherwise, sj,t = 0.

Subcircuit SC3 of cell circuit Cj,t generates the b-bit word vj,t that is used to provide
the value under the head on the tth step. vj,t is aj,t if the head is over the jth cell on the
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Figure 3.26 The cell circuit Cj,t has three components: SC1, a circuit to compute the new
value for the head location bit sj,t from the values of this quantity on the preceding step at
neighboring cells and the head movement vector ht, SC2, a circuit to replace the value in the jth
cell on the t step with the input w if the head is over the cell on the (t − 1)st step (sj,t−1 = 1),
and SC3, a circuit to produce the new value in the jth cell at the tth step if the head is over this
cell (sj,t = 1) and the zero vector otherwise. The circuit Cj,t has 5(b + 1) gates and depth 4.
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tth step (sj,t = 1) and 0 otherwise. The vector-OR of vj,t, 0 ≤ j ≤ m−1, is formed using
the tree circuit shown in Fig. 3.25 to compute the value of the b-bit word vt under the head
after the tth step. (This can be done by b balanced binary OR trees, each with size m − 1
and depth 2log2 m3.) vt is supplied to the tth copy of the control unit circuit, which also
uses the previous state of the control unit, qt, and the choice input ct (a tuple of Boolean
variables) to compute the next state, qt+1, the new b-bit word wt+1 for the current tape cell,
and the head movement command ht+1.

Summarizing, it follows that the tth tape circuit, Ct(m), uses O(S) gates (here S = mb)
and has depth O(log S/b).

Let Ccontrol and Dcontrol be the size and depth of the circuit simulating the control
unit. It follows that the circuit simulating T computation steps by a Turing machine M has
T Ccontrol gates in the T copies of the control unit and O(ST ) gates in the tape circuits for a
total of O(ST ) gates. Since the longest path through the circuit of Fig. 3.26 passes through
each control and tape circuit, the depth of this circuit is O(T (Dcontrol + log S/b)) =
O(T log S).

The simulation of M is completed by placing the head over the zeroth cell by letting
s0,0 = 1 and sj,0 = 0 for j 5= 0. The inputs to M are fixed by setting aj,0 = wj for
0 ≤ j ≤ n − 1 and to the blank symbol for j ≥ n. Finally, v0 is set equal to aj,0, the
value under the head at the start of the computation. The choice inputs are sets of Boolean
variables under the control of an outside agent and are treated as variables of the circuit
simulating the Turing machine M .

We now give two interpretations of the above simulation. The first establishes that the
circuit complexity for a function provides a lower bound to the time required by a computation
on a Turing machine. The second provides instances of problems that are P-complete and NP-
complete.

3.9.2 Computational Inequalities for Turing Machines
When the simulation of Theorem 3.9.1 is specialized to a deterministic Turing machine M , a
circuit is constructed that computes the function f computed by M in T steps with S bits of
memory. It follows that CΩ(f) and DΩ(f) cannot be larger than those given in this theorem,
since this circuit also computes f . From this observation we have the following computational
inequalities.

THEOREM 3.9.2 The function f computed by an m-word, b-bit one-tape Turing machine in T
steps can also be computed by a circuit whose size and depth satisfy the following bounds over any
complete basis Ω, where S = mb is the storage capacity used by this machine:

CΩ(f) = O(ST )

DΩ(f) = O(T log S)

Since S = O(T ) (at most T + 1 cells can be visited in T steps), we have the following
corollary. It demonstrates that the time T to compute a function f with a Turing machine is
at least the square root of its circuit size. As a consequence, circuit size complexity can be used
to derive lower bounds on computation time on Turing machines.
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COROLLARY 3.9.1 Let the function f be computed by an m-word, b-bit one-tape Turing machine
in T steps, b fixed. Then, over any complete basis Ω the following inequality must hold:

CΩ(f) = O
(
T 2

)

There is no loss in assuming that a language L is a set of strings over a binary alpha-
bet; that is, L ⊆ B∗. As explained in Section 1.2.3, a language can be defined by a family
{f1, f2, f3, . . .} of characteristic (Boolean) functions, fn : Bn "→ B, where a string w of
length n is in L if and only if fn(w) = 1.

Theorem 3.9.2 not only establishes a clear connection between Turing time complexity

and circuit size complexity, but it also provides a potential means to resolve the question P
?
=

NP of whether P and NP are equal or not. Circuit complexity is currently believed to be the
most promising tool to examine this question. (See Chapter 9.)

3.9.3 Reductions from Turing to Circuit Computations
As shown in Theorem 3.9.1, a circuit CM ,T can be constructed that simulates a time- and
space-bounded computation by either a deterministic or a nondeterministic Turing machine
M . If M is deterministic and accepts the binary input string w, then CM ,T has value 1 when
supplied with the value of w. If M is nondeterministic and accepts the binary input string w,
then for some values of the binary choice variables c, CM ,T on inputs w and c has value 1.

The language of strings describing circuits with fixed inputs whose value on these inputs
is 1 is called CIRCUIT VALUE. When the circuits also have variable inputs whose values can
be chosen so that the circuits have value 1, the language of strings describing such circuits is
called CIRCUIT SAT. (See Section 3.9.6.) The languages CIRCUIT VALUE and CIRCUIT SAT

are examples of P-complete and NP-complete languages, respectively.
The P-complete and NP-complete languages play an important role in complexity the-

ory: they are prototypical hard languages. The P-complete languages can all be recognized in
polynomial time on serial machines, but it is not known how to recognize them on parallel
machines in time that is a polynomial in the logarithm of the length of strings (this is called
poly-logarithmic time), which should be possible if they are parallelizable. The NP-complete
languages can be recognized in exponential time on deterministic serial machines, but it is
not known how to recognize them in polynomial time on such machines. Many important
problems have been shown to be P-complete or NP-complete.

Because so much effort has been expended without success in trying to show that the
NP-complete (P-complete) languages can be solved serially (in parallel) in polynomial (poly-
logarithmic) time, it is generally believed they cannot. Thus, showing that a problem is NP-
complete (P-complete) is considered good evidence that a problem is hard to solve serially (in
parallel).

To obtain such results, we exhibit a program that writes the description of the circuit CM ,T

from a description of the TM M and the values written initially on its tape. The time and
space needed by this program are used to classify languages and, in particular, to identify the
P-complete and NP-complete languages.

The simple program P shown schematically in Fig. 3.27 writes a description of the circuit
CM ,T of Fig. 3.25, which is deterministic or nondeterministic depending on the nature of
M . (Textual descriptions of circuits are given in Section 2.2. Also see Problem 3.8.) The
first loop of this program reads the value of ith input letter wi of the string w written on
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for i := 0 to n− 1
READ VALUE(wi)
WRITE INPUT(i, wi)

for j := n to m− 1
WRITE INPUT(j, β)

for t := 1 to T
WRITE CONTROL UNIT(t, ct)
WRITE OR(t, m)
for j := 0 to m− 1

WRITE CELL CIRCUIT(j, t)

Figure 3.27 A program P to write the description of a circuit CM ,T that simulates T steps of a
nondeterministic Turing machine M and uses m memory words. It reads the n inputs supplied
to M , after which it writes the input steps of a straight-line program that reads these n inputs as
well as m − n blanks β into the first copy of a tape unit. It then writes the remaining steps of a
straight-line program consisting of descriptions of the T copies of the control unit and the mT
cell circuits simulating the T copies of the tape unit.

the input tape of T , after which it writes a fragment of a straight-line program containing the
value of wi. The second loop sets the remaining initial values of cells to the blank symbol β.
The third outer loop writes a straight-line program for the control unit using the procedure
WRITE CONTROL UNIT that has as arguments t, the index of the current time step, and ct,
the tuple of Boolean choice input variables for the tth step. These choice variables are not used
if M is deterministic. In addition, this loop uses the procedure WRITE OR to write a straight-
line program for the vector OR circuit that forms the contents vt of the cell under the head
after the tth step. Its inner loop uses the procedure WRITE CELL CIRCUIT with parameters j
and t to write a straight-line program for the jth cell circuit in the tth tape.

The program P given in Fig. 3.27 is economical in its use of space and time, as we show.
Consider a language L in P; that is, for L there is a deterministic Turing machine ML and a
polynomial p(n) such that on an input string w of length n, ML halts in T = p(n) steps.
It accepts w if it is in L and rejects it otherwise. Since P uses space logarithmic in the values
of n and T and T = p(n), P uses space logarithmic in n. (For example, if p(n) = n6,
log2 p(n) = 6 log2 n = O(log n).) Such programs are called log-space programs.

We show in Theorem 8.8.1 that the composition of two log-space programs is a log-space
program, a non-obvious result. However, it is straightforward to show that the composition of
two polynomial-time programs is a polynomial-time program. (See Problems 3.2 and 8.19.)
Since P ’s inner and outer loops each execute a polynomial number of steps, it follows that P
is a polynomial-time program.

If M is nondeterministic, P continues to be a log-space, polynomial-time program. The
only difference is that it writes a circuit description containing references to choice variables
whose values are not specified in advance. We state these observations in the form of a theorem.

THEOREM 3.9.3 Let L ∈ P (L ∈ NP). Then for each string w ∈ Γ∗ a deterministic (nondeter-
ministic) circuit CM ,T can be constructed by a program in logarithmic space and polynomial time
in n = |w|, the length of w, such that the output of CM ,T , the value in the first tape cell, is (can
be) assigned value 1 (for some values of the choice inputs) if w ∈ L and 0 if w 5∈ L.
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The program of Fig. 3.27 provides a translation (or reduction ) from any language in NP
(or P) to a language that we later show is a hardest language in NP (or P).

We now use Theorem 3.9.3 and the above facts to give a brief introduction to the P-
complete and NP-complete languages, which are discussed in more detail in Chapter 8.

3.9.4 Definitions of P-Complete and NP-Complete Languages
In this section we identify languages that are hardest in the classes P and NP. A language L0 is
hardest in one of these classes if a) L0 is itself in the class and b) for every language L in the
class, a test for the membership of a string w in L can be constructed by translating w with an
algorithm to a string v and testing for membership of v in L0. If the class is P, the algorithm
must use at most space logarithmic in the length of w, whereas in the case of NP, the algorithm
must use time at most a polynomial in the length of w. Such a language L0 is said to be a
complete language for this complexity class. We begin by defining the P-complete languages.

DEFINITION 3.9.1 A language L ⊆ B∗ is P-complete if it is in P and if for every language
L0 ⊆ B∗ in P, there is a log-space deterministic program that translates each w ∈ B∗ into a string
w′ ∈ B∗ such that w ∈ L0 if and only if w′ ∈ L.

The NP-complete languages have a similar definition. However, instead of requiring that
the translation be log-space, we ask only that it be polynomial-time. It is not known whether
all polynomial-time computations can be done in logarithmic space.

DEFINITION 3.9.2 A language L ⊆ B∗ is NP-complete if it is in NP and if for every language
L0 ⊆ B∗ in NP, there is a polynomial-time deterministic program that translates each w ∈ B∗

into a string w′ ∈ B∗ such that w ∈ L0 if and only if w′ ∈ L.

Space precludes our explaining the important role of the P-complete languages. We simply
report that these languages are the hardest languages to parallelize and refer the reader to Sec-
tions 8.9 and 8.14.2. However, we do explain the importance of the NP-complete languages.

As the following theorem states, if an NP-complete language is in P; that is, if membership
of a string in an NP-complete language can be determined in polynomial time, then the same
can be done for every language in NP; that is, P and NP are the same class of languages.
Since decades of research have failed to show that P = NP, a determination that a problem is
NP-complete is a testimonial to but not a proof of its difficulty.

THEOREM 3.9.4 If an NP-complete language is in P, then P = NP.

Proof Let L be NP-complete and let L0 be an arbitrary language in NP. Because L is NP-
complete, there is a polynomial-time program that translates an arbitrary string w into a
string w′ such that w′ ∈ L if and only if w ∈ L0. If L ∈ P, then testing of membership
of strings in L0 can be done in polynomial time in the length of the string. It follows that
there exists a polynomial-time program to determine membership of a string in L0. Thus,
every language in NP is also in P.

3.9.5 Reductions to P-Complete Languages
We now formally define CIRCUIT VALUE, our first P-complete language.



c©John E Savage 3.9 Turing Machine Circuit Simulations 131

CIRCUIT VALUE

Instance: A circuit description with fixed values for its input variables and a designated
output gate.
Answer: “Yes” if the output of the circuit has value 1.

THEOREM 3.9.5 The language CIRCUIT VALUE is P-complete.

Proof To show that CIRCUIT VALUE is P-complete, we must show that it is in P and
that every language in P can be translated to it by a log-space program. We have already
shown the second half of the proof in Theorem 3.9.1. We need only show the first half,
which follows from a simple analysis of the obvious program. Since a circuit is a graph of a
straight-line program, each step depends on steps that precede it. (Such a program can be
produced by a pre-order traversal of the circuit starting with its output vertex.) Now scan
the straight-line program and evaluate and store in an array the value of each step. Successive
steps access this array to find their arguments. Thus, one pass over the straight-line program
suffices to evaluate it; the evaluating program runs in linear time in the length of the circuit
description. Hence CIRCUIT VALUE is in P.

When we wish to show that a new language L1 is P-complete, we first show that it is in
P. Then we show that every language L ∈ P can be translated to it in logarithmic space; that
is, for each string w, there is an algorithm that uses temporary space O(log |w|) (as does the
program in Fig. 3.27) that translates w into a string v such that w is in L if and only if v is
in L1. (This is called a log-space reduction. See Section 8.5 for a discussion of temporary
space.)

If we have already shown that a language L0 is P-complete, we ask whether we can save
work by using this fact to show that another language, L1, in P is P-complete. This is pos-
sible because the composition of two deterministic log-space algorithms is another log-space
algorithm, as shown in Theorem 8.8.1. Thus, if we can translate L0 into L1 with a log-space
algorithm, then every language in P can be translated into L1 by a log-space reduction. (This
idea is suggested in Fig. 3.28.) Hence, the task of showing L1 to be P-complete is reduced
to showing that L1 is in P and that L0, which is P-complete, can be translated to L1 by a
log-space algorithm. Many P-complete languages are exhibited in Section 8.9.

L1

L0

L

by Def. 3.9.1

log-space reduction

log-space reduction by Def. 3.9.1

Figure 3.28 A language L0 is shown P-complete by demonstrating that L0 is in P and that
every language L in P can be translated to it in logarithmic space. A new language L1 is shown
P-complete by showing that it is in P and that L0 can be translated to it in log-space. Since L can
be L1, L1 can also be translated to L0 in log-space.
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3.9.6 Reductions to NP-Complete Languages
Our first NP-complete language is CIRCUIT SAT, a language closely related to CIRCUIT

VALUE.

CIRCUIT SAT

Instance: A circuit description with n input variables {x1, x2, . . . , xn} for some integer n
and a designated output gate.
Answer: “Yes” if there is an assignment of values to the variables such that the output of the
circuit has value 1.

THEOREM 3.9.6 The language CIRCUIT SAT is NP-complete.

Proof To show that CIRCUIT SAT is NP-complete, we must show that it is in NP and that
every language in NP can be translated to it by a polynomial-time program. We have already
shown the second half of the proof in Theorem 3.9.1. We need only show the first half. As
discussed in the proof of Theorem 3.9.5, each circuit can be organized so that all steps on
which a given step depends precede it. We assume that a string in CIRCUIT SAT meets
this condition. Design an NTM which on such a string uses choice inputs to assign values
to each of the variables in the string. Then invoke the program described in the proof of
Theorem 3.9.5 to evaluate the circuit. For some assignment to the variables x1, x2, . . . , xn,
this nondeterministic program can accept each string in CIRCUIT SAT but no string not in
CIRCUIT SAT. It follows that CIRCUIT SAT is in NP.

The model used to show that a language is P-complete directly parallels the model used to
show that a language L1 is NP-complete. We first show that L1 is in NP and then show that
every language L ∈ NP can be translated to it in polynomial time. That is, we show that there
is a polynomial p and algorithm that on inputs of length n runs in time p(n), and that for
each string w the algorithm translates w into a string v such that w is in L if and only if v is
in L1. (This is called a polynomial-time reduction.) Since any algorithm that uses log-space
(as does the program in Fig. 3.27) runs in polynomial time (see Theorem 8.5.8), a log-space
reduction can be used in lieu of a polynomial-time reduction.

If we have already shown that a language L0 is NP-complete, we can show that another
language, L1, in NP is NP-complete by translating L0 into L1 with a polynomial-time algo-
rithm. Since the composition of two polynomial-time algorithms is another polynomial-time
algorithm (see Problem 3.2), every language in NP can be translated in polynomial time into
L1 and L1 is NP-complete. The diagram shown in Fig. 3.28 applies when the reductions
are polynomial-time and the languages are members of NP instead of P. Many NP-complete
languages are exhibited in Section 8.10.

We apply this idea to show that SATISFIABILITY is NP-complete. Strings in this language
consist of strings representing the POSE (product-of-sums expansion) of a Boolean function.
Thus, they consist of clauses containing literals (a variable or its negation) with the property
that for some value of the variables at least one literal in each clause is satisfied.

SATISFIABILITY

Instance: A set of literals X = {x1, x1, x2, x2, . . . , xn, xn} and a sequence of clauses
C = (c1, c2, . . . , cm) where each clause ci is a subset of X .
Answer: “Yes” if there is a (satisfying) assignment of values for the variables {x1, x2, . . . ,
xn} over the set B such that each clause has at least one literal whose value is 1.
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THEOREM 3.9.7 SATISFIABILITY is NP-complete.

Proof SATISFIABILITY is in NP because for each string w in this language there is a sat-
isfying assignment for its variables that can be verified by a polynomial-time program. We
sketch a deterministic RAM program for this purpose. This program reads as many choice
variables as there are variables in w and stores them in memory locations. It then evalu-
ates each literal in each clause in w and declares this string satisfied if all clauses evaluate
to 1. This program, which runs in time linear in the length of w, can be converted to
a Turing-machine program using the construction of Theorem 3.8.1. This program ex-
ecutes in a time cubic in the time of the original program on the RAM. We now show
that every language in NP can be reduced to SATISFIABILITY via a polynomial-time pro-
gram.

Given an instance of CIRCUIT SAT, as we now show, we can convert the circuit descrip-
tion, a straight-line program (see Section 2.2), into an instance of SATISFIABILITY such that
the former is a “yes” instance of CIRCUIT SAT if and only if the latter is a “yes” instance
of SATISFIABILITY. Shown below are the different steps of a straight-line program and the
clauses used to replace them in constructing an instance of SATISFIABILITY. A determinis-
tic TM can be designed to make these translations in time proportional to the length of the
circuit description. Clearly the instance of SATISFIABILITY that it produces is a satisfiable
instance if and only if the instance of CIRCUIT SAT is satisfiable.

Step Type Corresponding Clauses

(i READ x) (gi ∨ x) (gi ∨ x)

(i NOT j) (gi ∨ gj) (gi ∨ gj)

(i OR j k) (gi ∨ gj) (gi ∨ gk) (gi ∨ gj ∨ gk)

(i AND j k) (gi ∨ gj) (gi ∨ gk) (gi ∨ gj ∨ gk)

(i OUTPUT j) (gj)

For each gate type it is easy to see that each of the corresponding clauses is satisfiable
only for those gate and argument values that are consistent with the type of gate. For ex-
ample, a NOT gate with input gj has value gi = 1 when gj has value 0 and gi = 0 when
gj has value 1. In both cases, both of the clauses (gi ∨ gj) and (gi ∨ gj) are satisfied.
However, if gi is equal to gj , at least one of the clauses is not satisfied. Similarly, if gi

is the AND of gj and gk, then examining all eight values for the triple (gi, gj , gk) shows
that only when gi is the AND of gj and gk are all three clauses satisfied. The verification
of the above statements is left as a problem for the reader. (See Problem 3.36.) Since the
output clause (gj) is true if and only if the circuit output has value 1, it follows that the
set of clauses are all satisfiable if and only if the circuit in question has value 1; that is, it is
satisfiable.

Given an instance of CIRCUIT SAT, clearly a deterministic TM can produce the clauses
corresponding to each gate using a temporary storage space that is logarithmic in the length
of the circuit description because it need deal only with integers that are linear in the length
of the input. Thus, each instance of CIRCUIT SAT can be translated into an instance of
SATISFIABILITY in a number of steps polynomial in the length of the instance of CIRCUIT

SAT. Since it is also in NP, it is NP-complete.
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3.9.7 An Efficient Circuit Simulation of TM Computations*
In this section we construct a much more efficient circuit of size O(Tb log m) that simulates
a computation done in T steps by an m-word, b-bit one-tape TM. A similar result on circuit
depth is shown.

THEOREM 3.9.8 Let an m-word, b-bit Turing machine compute in T steps the function f , a

projection of f (T ,m,b)
TM , the function computed by the TM in T steps. Then the following bounds on

the size and depth of f over the complete basis Ω must be satisfied:

CΩ(f) = O (T (log[min(bT , S)])

DΩ(f) = O(T )

Proof The circuit CM ,T described in Theorem 3.9.1 has size proportional to O(ST ), where
S = mb. We now show that a circuit computing the same function, N(1, T , m), can be
constructed whose size is O (T (log[min(bT , S)]). This new circuit is obtained by more
efficiently simulating the tape unit portion of a Turing machine. We observe that if the head
never reaches a cell, the cell circuit of Fig. 3.26 can be replaced by wires that pass its inputs
to its output. It follows that the number of gates can be reduced if we keep the head near
the center of a simulated tape by “centering” it periodically. This is the basis for the circuit
constructed here.

It simplifies the design of N(1, T , m) to assume that the tape unit has cells indexed
from −m to m. Since the head is initially placed over the cell indexed with 0, it is over
the middle cell of the tape unit. (The control unit is designed so that the head never enters
cells whose index is negative.) We construct N(1, T , m) from a subcircuit N(c, s, n) that
simulates s steps of a tape unit containing n b-bit cells under the assumption that the tape
head is initially over one of the middle c cells where c and n are odd. Here n ≥ c + 2s, so
that in s steps the head cannot move from one of the middle c cells to positions that are not
simulated by this circuit. Let C(c, s, n) and D(c, s, n) be the size and depth of N(c, s, n).

As base cases for our recursive construction of N(c, s, n), consider the circuits N(1, 1, 3)
and N(3, 1, 5). They can be constructed from copies of the tape circuit Ct(3) and Ct(5)
since they simulate one step of tape units containing three and five cells, respectively. In fact,
these circuits can be simplified by removing unused gates. Without simplification Ct(n)
contains 5(b + 1) gates in each of the n cell circuits (see Fig. 3.26) as well as (n− 1)b gates
in the vector OR circuit, for a total of at most 6n(b + 1) gates. It has depth 4 + 2log2 n3.
Thus, N(1, 1, 3) and N(3, 1, 5) each can be realized with O(b) gates and depth O(1).

We now give a recursive construction of a circuit that simulates a tape unit. The
N(1, 2q, 4q +1) circuit simulates 2q steps of the tape unit when the head is over the middle
cell. It can be decomposed into an N(1, q, 2q + 1) circuit simulating the first q steps and
an N(2q + 1, q, 4q + 1) circuit simulating the second q steps, as shown in Fig. 3.29. In
the N(1, q, 2q + 1) circuit, the head may move from the middle position to any one of
2q + 1 positions in q steps, which requires that 2q + 1 of the inputs be supplied to it. In the
N(2q + 1, q, 4q + 1) circuit, the head starts in the middle 2q + 1 positions and may move
to any one of 4q + 1 middle positions in the next q steps, which requires that 4q + 1 inputs
be supplied to it. The size and depth of our N(1, 2q, 4q + 1) circuit satisfy the following
recurrences:



c©John E Savage 3.9 Turing Machine Circuit Simulations 135

...

...

...

...

...

...

... N(2q + 1, q, 4q + 1)N(1, 2q, 4q + 1) N(1, q, 2q + 1)

s2q

a2q

a−2q
s−2q

s2q

s−q

a−q

sq

aq

a2q

a−2q
s−2q

Figure 3.29 A decomposition of an N(1, 2q, 4q + 1) circuit.

C(1, 2q, 4q + 1) ≤ C(1, q, 2q + 1) + C(2q + 1, q, 4q + 1)

D(1, 2q, 4q + 1) ≤ D(1, q, 2q + 1) + D(2q + 1, q, 4q + 1)
(3.4)

When the number of tape cells is bounded, the above construction and recurrences
can be modified. Let m = 2p be the maximum number of cells used during a T -step
computation by the TM. We simulate this computation by placing the head over the middle
of a tape with 2m + 1 cells. It follows that at least m steps are needed to reach each of the
reachable cells. Thus, if T ≤ m, we can simulate the computation with an N(1, T , 2T +1)
circuit. If T ≥ m, we can simulate the first m steps with an N(1, m, 2m + 1) circuit and
the remaining T −m steps with 2(T −m)/m3 copies of an N(2m+1, m, 4m+1) circuit.
This follows because at the end of the first m steps the head is over the middle 2m + 1 of
4m + 1 cells (of which only 2m + 1 are used) and remains in this region after m steps due
to the limitation on the number of cells used by the TM.

From the above discussion we have the following bounds on the size C(T , m) and depth
D(T , m) of a simulating circuit for a T -step, m-word TM computation:

C(T , m) ≤
{

C(1, T , 2T + 1) T ≤ m

C(1, m, 2m + 1) +
(⌈

T
m

⌉
− 1

)
C(2m + 1, m, 4m + 1) T ≥ m

D(T , m) ≤
{

D(1, T , 2T + 1) T ≤ m

D(1, m, 2m + 1) +
(⌈

T
m

⌉
− 1

)
D(2m + 1, m, 4m + 1) T ≥ m

(3.5)

We complete the proof of Theorem 3.9.8 by bounding C(1, 2q, 4q + 1), C(2q +
1, q, 4q + 1), D(1, 2q, 4q + 1), and D(2q + 1, q, 4q + 1) appearing in (3.4) and com-
bining them with the bounds of (3.5).

We now give a recursive construction of an N(2q + 1, q, 4q + 1) circuit from which
these bounds are derived. Shown in Fig. 3.30 is the recursive decomposition of an N(4t +
1, 2t, 8t+1) circuit in terms of two copies of N(2t+1, t, 4t+1) circuits. The t-centering cir-
cuits detect whether the head is in positions 2t, 2t−1, . . . , 1, 0 or in positions−1, . . . ,−2t.
In the former case, this circuit cyclically shifts the 8t + 1 inputs inputs down by t positions;
in the latter, it cyclically shifts them up by t positions. The result is that the head is centered
in the middle 2t+1 positions. The OR of s−1, . . . , s−2t can be used as a signal to determine
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Figure 3.30 A recursive decomposition of N(4t + 1, 2t, 8t + 1).

which shift to take. After centering, t steps are simulated, the head is centered again, and
another t steps are again simulated. Two t-correction circuits cyclically shift the results in
directions that are the reverse of the first two shifts. This circuit correctly simulates the tape
computation over 2t steps and produces an N(4t + 1, 2t, 8t + 1) circuit.

A t-centering circuit can be realized as a single stage of the cyclic shift circuit described
in Section 2.5.2 and shown in Fig. 2.8. A t-correction circuit is just a t-centering circuit
in which the shift is in the reverse direction. The four shifting circuits can be realized with
O(tb) gates and constant depth. The two OR trees to determine the direction of the shift can
be realized with O(t) gates and depth O(log t). From this discussion we have the following
bounds on the size and depth of N(4t + 1, 2t, 8t + 1):

C(4t + 1, 2t, 8t + 1) ≤ 2C(2t + 1, t, 4t + 1) + O(bt)

C(3, 1, 5) ≤ O(b)

D(4t + 1, 2t, 8t + 1) ≤ 2D(2t + 1, t, 4t + 1) + 22log2 t3
D(3, 1, 5) ≤ O(1)

We now solve this set of recurrences. Let C(k) = C(2t + 1, t, 4t + 1) and D(k) =
D(2t+1, t, 4t+1) when t = 2k. The above bounds translate into the following recurrences:

C(k + 1) ≤ 2C(k) + K12k + K2

C(0) ≤ K3

D(k + 1) ≤ 2D(k) + 2k + K4

D(0) ≤ K5

for constants K1, K2, K3, K4, and K5. It is straightforward to show that C(k + 1) and
D(k + 1) satisfy the following inequalities:

C(k) ≤ 2k(K1k/2 + K2 + K3)−K2

D(k) ≤ 2k(K5 + K4 + 2)− 2k − (K4 + 2)



c©John E Savage 3.10 Design of a Simple CPU 137

We now derive explicit upper bounds to (3.4). Let Λ(k) = C(1, q, 2q+1) and ∆(k) =
D(1, q, 2q + 1) when q = 2k. Then, the inequalities of (3.4) become the following:

Λ(k + 1) ≤ Λ(k) + C(k)

Λ(0) ≤ K6

∆(k + 1) ≤ ∆(k) + D(k)

∆(0) ≤ K7

where K6 = C(1, 1, 3) = 7b + 3 and K7 = D(1, 1, 3) = 4. The solutions to these
recurrences are given below.

Λ(k) ≤
k−1∑

j=0

C(j)

= 2k(K1k/2 + K2 + K3 −K1)− kK2 + (K6 − (K2 + K3 −K1))

= O(k2k)

∆(k) ≤
k−1∑

j=0

D(j)

= 2k(K5 + K4 + 2)− k2 + (1− (K4 + 2))k + (K7 − (K5 + K4 + 2))

= O(2k)

Here we have made use of the identity in Problem 3.1. From (3.5) and (3.6) we establish
the result of Theorem 3.9.8.

3.10 Design of a Simple CPU
In this section we design an eleven-instruction CPU for a general-purpose computer that has a
random-access memory with 212 16-bit memory words. We use this design to illustrate how a
general-purpose computer can be assembled from gates and binary storage devices (flip-flops).
The design is purposely kept simple so that basic concepts are made explicit. In practice,
however, CPU design can be very complex. Since the CPU is the heart of every computer, a
high premium is attached to making them fast. Many clever ideas have been developed for this
purpose, almost all of which we must for simplicity ignore here.

Before beginning, we note that a typical complex instruction set (CISC) CPU, one with
a rich set of instructions, contains several tens of thousands of gates, while as shown in the
previous section, a random-access memory unit has a number of equivalent gates proportional
to its memory capacity in bits. (CPUs are often sold with caches, small random-access memory
units that add materially to the number of equivalent gates.) The CPUs of reduced instruction
set (RISC) computers have many fewer gates. By contrast, a four-megabyte memory has the
equivalent of several tens of millions of gates. As a consequence, the size and depth of the
next-state and output functions of the random-access memory, δRMEM and λRMEM, typically
dominate the size and depth of the next-state and output functions, δCPU and λCPU, of the
CPU, as shown in Theorem 3.6.1.
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3.10.1 The Register Set
A CPU is a sequential circuit that repeatedly reads and executes an instruction from its memory
in what is known as the fetch-and-execute cycle. (See Sections 3.4 and 3.10.2.) A machine-
language program is a set of instructions drawn from the instruction set of the CPU. In our
simple CPU each instruction consists of two parts, an opcode and an address, as shown
schematically below.

1 4 5 16
Opcode Address

Since our computer has eleven instructions, we use a 4-bit opcode, a length sufficient to
represent all of them. Twelve bits remain in the 16-bit word, providing addresses for 4,096
16-bit words in a random-access memory.

We let our CPU have eight special registers: the 16-bit accumulator (AC), the 12-bit
program counter (PC), the 4-bit opcode register (OPC), the 12-bit memory address register
(MAR), the 16-bit memory data register (MDR), the 16-bit input register (INR), the 16-
bit output register (denoted OUTR), and the halt register (HLT). These registers are shown
schematically together with the random-access memory in Fig. 3.31.

The program counter PC contains the address from which the next instruction will be
fetched. Normally this is the address following the address of the current instruction. However,
if some condition is true, such as that the contents of the accumulator AC are zero, the program
might place a new address in the PC and jump to this new address. The memory address
register MAR contains the address used by the random-access memory to fetch a word. The
memory data register MDR contains the word fetched from the memory. The halt register
HLT contains the value 0 if the CPU is halted and otherwise contains 1.

161
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1
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ALU
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Memory Unit

41
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Figure 3.31 Basic registers of the simple CPU and the paths connecting them. Also shown
is the arithmetic logic unit (ALU) containing circuits for AND, addition, shifting, and Boolean
complement.
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3.10.2 The Fetch-and-Execute Cycle
The fetch-and-execute cycle has a fetch portion and an execution portion. The fetch portion
is always the same: the instruction whose address is in the PC is fetched into the MDR and
the opcode portion of this register is copied into the OPC. At this point the action of the CPU
diverges, based on the instruction denoted by the value of the OPC. Suppose, for example,
that the OPC denotes a load accumulator instruction. The action required is to copy the word
specified by the address part of the instruction into the accumulator. Fig. 3.32 contains a de-
composition of the load accumulator instruction into eight microinstructions executed in six
microcycles. During each microcycle several microinstructions can be executed concurrently,
as shown in the table for the second and fourth microcycles. In Section 3.10.5 we describe
implementations of the fetch-and-execute cycle for each of the instructions of our computer.

It is important to note that a realistic CPU must do more than fetch and execute instruc-
tions: it must be interruptable by a user or an external device that demands its attention. After
fetching and executing an instruction, a CPU typically examines a small set of flip-flops to see
if it must break away from the program it is currently executing to handle an interrupt, an
action equivalent to fetching an instruction associated with the interrupt. This action causes
an interrupt routine to be run that responds to the problem associated with the interrupt, after
which the CPU returns to the program it was executing when it was interrupted. It can do
this by saving the address of the next instruction of this program (the value of the PC) at a
special location in memory (such as address 0). After handling the interrupt, it branches to
this address by reloading PC with the old value.

3.10.3 The Instruction Set
Figure 3.33 lists the eleven instructions of our simple CPU. The first group consists of arith-
metic (see Section 2.7), logic, and shift instructions (see Section 2.5.1). The circulate in-
struction executes a cyclic shift of the accumulator by one place. The second group consists
of instructions to move data between the accumulator and memory. The third set contains
a conditional jump instruction: when the accumulator is zero, it causes the CPU to resume
fetching instructions at a new address, the address in the memory data register. This address
is moved to the program counter before fetching the next instruction. The fourth set contains
input/output instructions. The fifth set contains the halt instruction. Many more instruc-

Cycle Microinstruction Microinstruction

1 Copy contents of PC to MAR.
2 Fetch word at address MAR into MDR. Increment PC.
3 Copy opcode part of MDR to OPC.
4 Interpret OPC Copy address part of MDR

to MAR.
5 Fetch word at address MAR into MDR.
6 Copy MDR into AC.

Figure 3.32 Decomposition of the load accumulator instruction into eight microinstructions
in six microcycles.
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Opcode Binary Description

Arithmetic ADD 0000 Add memory word to AC
Logic AND 0001 AND memory word to AC

CLA 0010 Clear (set to zero) the accumulator
CMA 0011 Complement AC
CIL 0100 Circulate AC left

Memory LDA 0101 Load memory word into AC
STA 0110 Store AC into memory word

Jump JZ 0111 Jump to address if AC zero

I/O IN 1000 Load INR into AC
OUT 1001 Store AC into OUTR

Halt HLT 1010 Halt computer

Figure 3.33 Instructions of the simple CPU.

tions could be added, including ones to simplify the execution of subroutines, handle loops,
and process interrupts. Each instruction has a mnemonic opcode, such as CLA, and a binary
opcode, such as 0010.

Many other operations can be performed using this set, including subtraction, which
can be realized through the use of ADD, CMA, and two’s-complement arithmetic (see Prob-
lem 3.18). Multiplication is also possible through the use of CIL and ADD (see Problem 3.38).
Since multiple CILs can be used to rotate right one place, division is also possible. Finally, as
observed in Problem 3.39, every two-input Boolean function can be realized through the use
of AND and CMA. This implies that every Boolean function can be realized by this machine
if it is designed to address enough memory locations.

Each of these instructions is a direct memory instruction, by which we mean that all
addresses refer directly to memory locations containing the operands (data) on which the pro-
gram operates. Most CPUs also have indirect memory instructions (and are said to support
indirection). These are instructions in which an address is interpreted as the address at which
to find the address containing the needed operand. To find such an indirect operand, the CPU
does two memory fetches, the first to find the address of the operand and the second to find
the operand itself. Often a single bit is added to an opcode to denote that an instruction is an
indirect memory instruction.

An instruction stored in the memory of our computer consists of sixteen binary digits, the
first four denoting the opcode and the last twelve denoting an address. Because it is hard for
humans to interpret such machine-language statements, mnemonic opcodes and assembly
languages have been devised.

3.10.4 Assembly-Language Programming
An assembly-language program consists of a number of lines each containing either a real or
pseudo-instruction. Real instructions correspond exactly to machine-language instructions ex-
cept that they contain mnemonics and symbolic addresses instead of binary sequences. Pseudo-
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instructions are directions to the assembler, the program that translates an assembly-language
program into machine language. A typical pseudo-instruction is ORG 100, which instructs
the assembler to place the following lines at locations beginning with location 100. Another
example is the DAT pseudo-instruction that identifies a word containing only data. The END
pseudo-instruction identifies the end of the assembly-language program.

Each assembly-language instruction fits on one line. A typical instruction has the following
fields, some or all of which may be used.

Symbolic Address Mnemonic Address Indirect Bit Comment

If an instruction has a Symbolic Address (a string of symbols), the address is converted
to the physical address of the instruction by the assembler and substituted for all uses of the
symbolic address. The Address field can contain one or more symbolic or real addresses, al-
though the assembly language used here allows only one address. The Indirect Bit specifies
whether or not indirection is to be used on the address in question. In our CPU we do not
allow indirection, although we do allow it in our assembly language because it simplifies our
sample program.

Let’s now construct an assembly-language program whose purpose is to boot up a computer
that has been reset. The boot program reads another program provided through its input port
and stores this new program (a sequence of 16-bit words) in the memory locations just above
itself. When it has finished reading this new program (determined by reading a zero word),
it transfers control to the new program by jumping to the first location above itself. When
computers are turned off at night they need to be rebooted, typically by executing a program
of this kind.

Figure 3.34 shows a program to boot up our computer. It uses three symbolic addresses,
ADDR 1, ADDR 2, ADDR 3, and one real address, 10. We assume this program resides

ORG 0 Program is stored at location 0.

ADDR 1 IN Start of program.

JZ 10 Transfer control if AC zero.

STA ADDR 2 I Indirect store of input.

LDA ADDR 2 Start incrementing ADDR 2.

ADD ADDR 3 Finish incrementing of ADDR 2.

STA ADDR 2 Store new value of ADDR 2.

CLA Clear AC.

JZ ADDR 1 Jump to start of program.

ADDR 2 DAT 10 Address for indirection.

ADDR 3 DAT 1 Value for incrementing.
END

Figure 3.34 A program to reboot a computer.
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permanently in locations 0 through 9 of the memory. After being reset, the CPU reads and
executes the instruction at location 0 of its memory.

The first instruction of this program after the ORG statement reads the value in the input
register into the accumulator. The second instruction jumps to location 10 if the accumulator
is zero, indicating that the last word of the second program has been written into the memory.
If this happens, the next instruction executed by the CPU is at location 10; that is, control is
transferred to the second program. If the accumulator is not zero, its value is stored indirectly at
location ADDR 2. (We explain the indirect STA in the next paragraph.) On the first execution
of this command, the value of ADDR 2 is 10, so that the contents of the accumulator are
stored at location 10. The next three steps increment the value of ADDR 2 by placing its
contents in the accumulator, adding the value in location ADDR 3 to it, namely 1, and storing
the new value into location ADDR 2. Finally, the accumulator is zeroed and a JZ instruction
used to return to location ADDR 1, the first address of the boot program.

The indirect STA instruction in this program is not available in our computer. However,
as shown in Problem 3.42, this instruction can be simulated by a self-modifying subprogram.
While it is considered bad programming practice to write self-modifying programs, this exer-
cise illustrates the power of self-modification as well as the advantage of having indirection in
the instruction set of a computer.

3.10.5 Timing and Control
Now that the principles of a CPU have been described and a programming example given, we
complete the description of a sequential circuit realizing the CPU. To do this we need to de-
scribe circuits controlling the combining and movement of data. To this end we introduce the
assignment notation in Fig. 3.35. Here the expression AC ← MDR means that the contents
of MDR are copied into AC, whereas AC← AC + MDR means that the contents of AC and
MDR are added and the result assigned to AC. In all cases the left arrow, ←, signifies that
the result or contents on the right are assigned to the register on the left. However, when the
register on the left contains information of a particular type, such as an address in the case of
PC or an opcode in the case of OPC, and the register on the right contains more information,
the assignment notation means that the relevant bits of the register on the right are loaded
into the register on the left. For example, the assignment PC←MDR means that the address
portion of MDR is copied to PC.

Register transfer notation uses these assignment operations as well as timing information
to break down a machine-level instruction into microinstructions that are executed in succes-

Notation Explanation

AC←MDR Contents of MDR loaded into AC.
AC← AC + MDR Contents of MDR added to AC.
MDR←M Contents of memory location MAR loaded into MDR.
M←MDR Contents of MDR stored at memory location MAR.
PC←MDR Address portion of MDR loaded into PC.
MAR← PC Contents of PC loaded into MAR.

Figure 3.35 Microinstructions illustrating assignment notation.
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Timing Microinstructions

t1 MAR ← PC
t2 MDR←M, PC← PC+1
t3 OPC←MDR

Figure 3.36 The microcode for the fetch portion of each instruction.

sive microcycles. The jth microcycle is specified by the timing variable tj , 1 ≤ j ≤ k. That
is, tj is 1 during the jth microcycle and is zero otherwise. It is straightforward to show that
these timing variables can be realized by connecting a decoder to the outputs of a counting
circuit, a circuit containing the binary representation of an integer that increments the integer
modulo some other integer on each clock cycle. (See Problem 3.40.)

Since the fetch portion of each instruction is the same, we write a few lines of register
transfer notation for it, as shown in Fig. 3.36. On the left-hand side of each line is timing
variable indicating the cycle during which the microinstruction is executed.

The microinstructions for the execute portion of each instruction of our computer are
shown in Fig. 3.37. On the left-hand side of each line is a timing variable that must be ANDed
with the indicated instruction variable, such as cADD, which is 1 if that instruction is in

Control Microcode

ADD

cADD t4 MAR←MDR
cADD t5 MDR←M
cADD t6 AC← AC + MDR

AND

cAND t4 MAR←MDR
cAND t5 MDR←M
cAND t6 AC← AC AND MDR

CLA

cCLA t4 AC← 0

CIL

cCIL t4 AC← Shift(AC)

LDA

cLDA t4 MAR←MDR
cLDA t5 MDR←M
cLDA t6 AC←MDR

Control Microcode

STA

cSTA t4 MAR ←MDR
cSTA t4 MDR← AC
cSTA t5 M←MDR

CMA

cCMA t4 AC← ¬ AC

JZ

cJZ t4 if ( AC = 0) PC←MDR

IN

cIN t4 AC← INR

OUT

cOUT t4 OUTR← AC

HLT

cHLT t4 tj ← 0 for 1 ≤ j ≤ k

Figure 3.37 The execute portions of the microcode of instructions.
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the opcode register OPC and 0 otherwise. These instruction variables can be generated by a
decoder attached to the output of OPC. Here ¬A denotes the complement of the accumulator.

Now that we understand how to combine microinstructions in microcycles to produce
macroinstructions, we use this information to define control variables that control the move-
ment of data between registers or combine the contents of two registers and assign the result
to another register. This information will be used to complete the design of the CPU.

We now introduce notation for control variables. If a microinstruction results in the
movement of data from register B to register A, denoted A ← B in our assignment nota-
tion, we associate the control variable L(A, B) with it. If a microinstruction results in the
combination of the contents of registers B and C with the operation * and the assignment
of the result to register A, denoted A ← B * C in our assignment notation, we associate
the control variable L(A, B * C) with it. For example, inspection of Figs. 3.36 and 3.37
shows that we can write the following expressions for the control variables L(OPC, MDR)
and L(AC, AC+MDR):

L(OPC, MDR) = t3

L(AC, AC+MDR) = cADD ∧ t6

Thus, OPC is loaded with the contents of MDR when t3 = 1, and the contents of AC are
added to those of MDR and copied into AC when cADD ∧ t6 = 1.

The complete set of control variables can be obtained by first grouping together all the mi-
croinstructions that affect a given register, as shown in Fig. 3.38, and then writing expressions
for the control variables. Here M denotes the memory unit and HLT is a special register that
must be set to 1 for the CPU to run. Inspection of Fig. 3.38 leads to the following expressions
for control variables:

L(AC, AC + MDR) = cADD ∧ t6

L(AC, AC AND MDR) = cAND ∧ t6

L(AC, 0) = cCLA ∧ t4

L(AC, Shift(AC)) = cCIL ∧ t4

L(AC, MDR) = cLDA ∧ t6

L(AC, INR) = cIN ∧ t4

L(AC,¬ AC) = cCMA ∧ t4

L(MAR, PC) = t1

L(MAR, MDR) = (cADD ∨ cAND ∨ cLDA ∨ cSTA) ∧ t4

L(MDR, M) = t2 ∨ (cADD ∨ cAND ∨ cLDA) ∧ t5

L(MDR, AC) = cSTA ∧ t4

L(M, MDR) = cSTA ∧ t5

L(PC, PC+1) = t2

L(PC, MDR) = (AC = 0) ∧ cJZ ∧ t4

L(OPC, MDR) = t3

L(OUTR, AC) = cOUT ∧ t4

L(tj) = cHLT ∧ t4 for 1 ≤ j ≤ 6
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Control Microcode

AC

cADD t6 AC← AC + MDR
cAND t6 AC← AC AND MDR
cCLA t4 AC← 0
cCIL t4 AC← Shift(AC)
cLDA t6 AC←MDR
cCMA t4 AC← ¬ AC
cIN t4 AC← INR

MAR

t1 MAR ← PC
cADD t4 MAR ←MDR
cAND t4 MAR ←MDR
cLDA t4 MAR ←MDR
cSTA t4 MAR ←MDR

MDR

t2 MDR←M
cADD t5 MDR←M
cAND t5 MDR←M
cLDA t5 MDR←M
cSTA t4 MDR← AC

Control Microcode

M

cSTA t5 M←MDR

PC

t2 PC← PC+1
cJZ t4 if ( AC = 0) PC←MDR

OPC

t3 OPC←MDR

OUTR

cOUT t4 OUTR← AC

HLT

cHLT t4 tj ← 0 for 1 ≤ j ≤ k

Figure 3.38 The microinstructions affecting each register.

The expression (AC = 0) denotes a Boolean variable whose value is 1 if all bits in the AC
are zero and 0 otherwise. This variable is the AND of the complement of each component of
register AC.

To illustrate the remaining steps in the design of the CPU, we show in Fig. 3.39 the
circuits used to provide input to the accumulator AC. Shown are registers AC, MDR, and
INR as well as circuits for the functions fadd (see Section 2.7) and fand that add two bi-
nary numbers and take their AND, respectively. Also shown are multiplexer circuits fmux (see
Section 2.5.5). They have three control inputs, L0, L1, and L2, and can select one of eight
inputs to place on their output lines. However, only seven inputs are needed: the result of
adding AC and MDR, the result of ANDing AC and MDR, the zero vector, the result of shift-
ing AC, the contents of MDR or INR, and the complement of AC. The three control inputs
encode the seven control variables, L(AC, AC + MDR), L(AC, AC AND MDR), L(AC, 0),
L(AC, Shift(AC)), L(AC, MDR), L(AC, INR), and L(AC,¬AC). Since at most one of these
control variables has value 1 at any one time, the encoder circuit of Section 2.5.3 can be used
to encode these seven control variables into the three bits L0, L1, and L2 shown in Fig. 3.39.

The logic circuit to supply inputs to AC has size proportional to the number of bits in each
register. Thus, if the word size of the CPU were scaled up, the size of this circuit would scale
linearly with the word size.
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shift

fand

shift

fadd
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fnot

AC

INR

0
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fmuxfmux

Figure 3.39 Circuits providing input to the accumulator AC.

The circuit for the program counter PC can be designed from an adder, a multiplexer, and
a few additional gates. Its size is proportional to 2log2 m3. The circuits to supply inputs to
the remaining registers, namely MAR, MDR, OPC, INR, and OUTR, are less complex to
design than those for the accumulator. The same observations apply to the control variable to
write the contents of the memory. The complete design of the CPU is given as an exercise (see
Problem 3.41).

3.10.6 CPU Circuit Size and Depth
Using the design given above for a simple CPU as a basis, we derive upper bounds on the size
and depth of the next-state and output functions of the RAM CPU defined in Section 3.4.

All words on which the CPU operates contain b bits except for addresses, which contain
2log m3 bits where m is the number of words in the random-access memory. We assume that
the CPU not only has an 2log m3-bit program counter but can send the contents of the PC
to the MAR of the random-access memory in one unit of time. When the CPU fetches an
instruction that refers to an address, it may have to retrieve multiple b-bit words to create an
2log m3-bit address. We assume the time for such operations is counted in the number T of
steps that the RAM takes for the computation.

The arithmetic operations supported by the RAM CPU include addition and subtraction,
operations realized by circuits with size and depth linear and logarithmic respectively in b, the
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length of the accumulator. (See Section 2.7.) The same is true for the logical vector and the
shift operations. (See Section 2.5.1.) Thus, circuits affecting the accumulator (see Fig. 3.39)
have size O(b) and depth O(log b). Circuits affecting the opcode and output registers and
the memory address and data registers are simple and have size O(b) and depth O(log b).
The circuits affecting the program counter not only support transfer of data from the accu-
mulator to the program counter but also allow the program counter to be incremented. The
latter function can be performed by an adder circuit whose size is O(2log m3) and depth is
O(log2log m3). It follows that

CΩ(δCPU) = O(b + 2log m3)
DΩ(δCPU) = O(log b + log2log m3)

3.10.7 Emulation
In Section 3.4 we demonstrated that whatever computation can be done by a finite-state ma-
chine can be done by a RAM when the latter has sufficient memory. This universal nature of
the RAM, which is a model for the CPU we have just designed, is emphasized by the problem
of emulation, the simulation of one general-purpose computer by another.

Emulation of a target CPU by a host CPU means reading the instructions in a program
for the target CPU and executing host instructions that have the same effect as the target
instructions. In Problem 3.44 we ask the reader to sketch a program to emulate one CPU
by another. This is another manifestation of universality, this time for unbounded-memory
RAMs.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Problems
MATHEMATICAL PRELIMINARIES

3.1 Establish the following identity:

k∑

j=0

j2j = 2
(
(k − 1)2k + 1

)

3.2 Let p : "→ and q : "→ be polynomial functions on the set of non-
negative integers. Show that p(q(n)) is also a polynomial in n.

FINITE-STATE MACHINES

3.3 Describe an FSM that compares two binary numbers supplied as concurrent streams of
bits in descending order of importance and enters a rejecting state if the first string is
smaller than the second and an accepting state otherwise.

3.4 Describe an FSM that computes the threshold-two function on n Boolean inputs that
are supplied sequentially to the machine.

3.5 Consider the full-adder function fFA(xi, yi, ci) = (ci+1, si) defined below where +
denotes integer addition:

2ci+1 + si = xi + yi + ci
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Show that the subfunction of fFA obtained by fixing ci = 0 and deleting ci+1 is the
EXCLUSIVE OR of the variables xi and yi.

3.6 It is straightforward to show that every Moore FSM is a Mealy FSM. Given a Mealy
FSM, show how to construct a Moore FSM whose outputs for every input sequence are
identical to those of the Mealy FSM.

3.7 Find a deterministic FSM that recognizes the same language as that recognized by the
nondeterministic FSM of Fig. 3.8.

3.8 Write a program in a language of your choice that writes the straight-line program
described in Fig. 3.3 for the FSM of Fig. 3.2 realizing the EXCLUSIVE OR function.

SHALLOW FSM CIRCUITS

3.9 Develop a representation for states in the m-word, b-bit random-access memory so that
its next-state mappings form a semigroup.

Hint: Show that the information necessary to update the current state can be succinctly
described.

3.10 Show that matrix multiplication is associative.

SEQUENTIAL CIRCUITS

3.11 Show that the circuit of Fig. 3.15 computes the functions defined in the tables of
Fig. 3.14.

Hint: Section 2.2 provides a method to produce a circuit from a tabular description of
a binary function.

3.12 Design a sequential circuit (an electronic lock) that enters an accepting state only when
it receives some particular four-bit sequence that you specify.

3.13 Design a sequential circuit (a modulo-p counter) that increments a binary number by
one on each step until it reaches the integer value p, at which point it resets its value to
zero. You should assume that p is not a power of 2.

3.14 Give an efficient design of an incrementing/decrementing counter, a sequential cir-
cuit that increments or decrements a binary number modulo 2n. Specify the machine
as an FSM and determine the number of gates in the sequential circuit in terms of n.

RANDOM-ACCESS MACHINES

3.15 Given a straight-line program for a Boolean function, describe the steps taken to com-
pute it during fetch-and-execute cycles of a RAM. Determine whether jump instruc-
tions are necessary to execute such programs.

3.16 Consulting Theorem 3.4.1, determine whether jump instructions are necessary for all
RAM computations. If not, what advantage accrues to using them?

3.17 Sketch a RAM program using time and space O(n) that recognizes strings of the form
{0m1m | 1 ≤ m ≤ n}.
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ASSEMBLY-LANGUAGE PROGRAMMING

3.18 Write an assembly-language program in the language of Fig. 3.18 to subtract two inte-
gers.

3.19 The assembly-language instructions of Fig. 3.18 operate on integers. Show that the
operations AND, OR, and NOT can be realized on Boolean variables with these instruc-
tions. Show also that these operations on vectors can be implemented.

3.20 Write an assembly-language program in the language of Fig. 3.18 to form xy for inte-
gers x and y.

3.21 Show that the assembly-language instructions CLR Ri, Ri ← Rj , JMP+ Ni, and JMP−
Ni can be realized from the assembly-language instructions INC, DEC, CONTINUE,
Rj JMP+ Ni, and Rj JMP− Ni.

TURING MACHINES

3.22 In a standard Turing machine the tape unit has a left end but extends indefinitely to the
right. Show that allowing the tape unit to be infinite in both directions does not add
power to the Turing machine.

3.23 Describe in detail a Turing machine with unlimited storage capacity that recognizes the
language {0m1m|1 ≤ m}.

3.24 Sketch a proof that in O(n4) steps a Turing machine can verify that a particular tour
of n cities in an instance of the Traveling Salesperson Problem satisfies the requirement
that the total distance traveled is less than or equal to the limit k set on this instance of
the Traveling Salesperson Problem.

3.25 Design the additional circuitry needed to transform a sequential circuit for a random-
access memory into one for a tape memory. Give upper bounds on the size and depth
of the next-state and output functions that are simultaneously achievable.

3.26 In the proof of Theorem 3.8.1 it is assumed that the words and their addresses in a
RAM memory unit are placed on the tape of a Turing machine in order of increasing
addresses, as suggested by Fig. 3.40. The addresses, which are 2log m3 bits in length,
are organized as a collection of 22log m3/b3 b-bit words. (In the example, b = 1.) An
address is written on tape cells that immediately precede the value of the corresponding
RAM word. A RAM address addr is stored on the tape to the left in the shaded region.

Assume that markers can be placed on cells. (This amounts to enlarging the tape al-
phabet by a constant factor.) Show that markers can be used to move from the first
word whose RAM address matches the ib most significant bits of the address a to the

♦ ♠ ♦ ♠♦
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1

w
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♠
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0

0 1 1 0 101 1

♦

w
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Figure 3.40 A TM tape with markers on words and the first bit of each address.
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next one that matches the (i + 1)b most significant bits. Show that this procedure can
be used to find the RAM word whose address matches addr in O((m/b)(logm)2)
Turing machine steps by a machine that can store in its control unit only one b-bit
subword of addr.

3.27 Extend Problem 3.26 by demonstrating that the simulation can be done with a binary
tape symbol alphabet.

3.28 Extend Theorem 3.8.1 to show that there exists a Turing machine that can simulate an
unbounded-memory RAM.

3.29 Sketch a proof that every Turing machine can be simulated by a RAM program of the
kind described in Section 3.4.3.

Hint: Because such RAM programs can only have a finite number of registers, encode
the contents of the TM tape as a number to be stored in one register.

COMPUTATIONAL INEQUALITIES FOR TURING MACHINES

3.30 Show that a one-tape Turing machine needs time exponential in n to compute most
Boolean functions f : Bn "→ B on n variables, regardless of how much memory is
allocated to the computation.

3.31 Apply Theorem 3.2.2 to the one-tape Turing machine that executes T steps. Deter-
mine whether the resulting inequalities are weaker or stronger than those given in The-
orem 3.9.2.

3.32 Write a program in your favorite language for the procedure WRITE OR(t, m) intro-
duced in Fig. 3.27.

3.33 Write a program in your favorite language for the procedure WRITE CELL CIRCUIT(t,
m) introduced in Fig. 3.27.

Hint: See Problem 2.4.

FIRST P-COMPLETE AND NP-COMPLETE PROBLEMS

3.34 Show that the language MONOTONE CIRCUIT VALUE defined below is P-complete.

MONOTONE CIRCUIT VALUE

Instance: A description for a monotone circuit with fixed values for its input variables
and a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

Hint: Using dual-rail logic, find a way to translate (reduce) a string in the language
CIRCUIT VALUE to a string in MONOTONE CIRCUIT VALUE by converting in loga-
rithmic space (in the length of the string) a circuit over the standard basis to a circuit
over the monotone basis. Note that, as stated in the text, the composition of two
logarithmic-space reductions is a logarithmic-space reduction. To simplify the con-
version from non-monotone circuits to monotone circuits, use even integers to index
vertices in the non-monotone circuits so that both even and odd integers can be used
in the monotone case.

3.35 Show that the language FAN-OUT 2 CIRCUIT SAT defined below is NP-complete.
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FAN-OUT 2 CIRCUIT SAT

Instance: A description for a circuit of fan-out 2 with free values for its input variables
and a designated output gate.
Answer: “Yes” if the output of the circuit has value 1.

Hint: To reduce the fan-out of a vertex, replace the direct connections between a gate
and its successors by a binary tree whose vertices are AND gates with their inputs con-
nected together. Show that, for each gate of fan-out more than two, such trees can be
generated by a program that runs in polynomial time.

3.36 Show that clauses given in the proof of Theorem 3.9.7 are satisfied only when their
variables have values consistent with the definition of the gate type.

3.37 A circuit with n input variables {x1, x2, . . . , xn} is satisfiable if there is an assignment
of values to the variables such that the output of the circuit has value 1. Assume that
the circuit has only one output and the gates are over the basis Ω = {AND, OR, NOT}.

a) Describe a nondeterministic procedure that accepts as input the description of a
circuit in POSE and returns 1 if the circuit is satisfiable and 0 otherwise.

b) Describe a deterministic procedure that accepts as input the description of a circuit
in POSE and returns 1 if the circuit is satisfiable and 0 otherwise. What is the
running time of this procedure when implemented on the RAM?

c) Describe an efficient (polynomial-time) deterministic procedure that accepts as in-
put the description of a circuit in SOPE and returns 1 if the circuit is satisfiable
and 0 otherwise.

d) By using Boolean algebra, we can convert a circuit from POSE to SOPE. We can
then use the result of the previous question to determine if the circuit is satisfiable.
What is the drawback of this approach?

CENTRAL PROCESSING UNIT

3.38 Write an assembly-language program to multiply two binary numbers using the sim-
ple CPU of Section 3.10. How large are the integers that can be multiplied without
producing numbers that are too large to be recorded in registers?

3.39 Assume that the simple CPU of Section 3.10 is modified to address an unlimited num-
ber of memory locations. Show that it can realize any Boolean function by demonstrat-
ing that it can compute the Boolean operations AND, OR, and NOT.

3.40 Design a circuit to produce the timing variables tj , 1 ≤ j ≤ k, of the simple CPU.
They must have the property that exactly one of them has value 1 at a time and they
successively become 1.

Hint: Design a circuit that counts sequentially modulo k, an integer. That is, it incre-
ments a binary number until it reaches k, after which it resets the number to zero. See
Problem 3.13.

3.41 Complete the design of the CPU of Section 3.10 by describing circuits for PC, MAR,
MDR, OPC, INR, and OUTR.

3.42 Show that an indirect store operation can be simulated by the computer of Section 3.10.
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Hint: Construct a program that temporarily moves the value of AC aside, fetches the
address containing the destination for the store, and uses Boolean operations to modify
a STA instruction in the program so that it contains the destination address.

3.43 Write an assembly-language program that repeatedly examines the input register until
it is nonzero and then moves its contents to the accumulator.

3.44 Sketch an assembly-language program to emulate a target CPU by a host CPU under
the assumption that each CPU’s instruction set supports indirection. Provide a skeleton
program that reads an instruction from the target instruction set and decides which host
instruction to execute. Also sketch the particular host instructions needed to emulate a
target add instruction and a target jump-on-zero instruction.

Chapter Notes
Although the concept of the finite-state machine is fully contained in the Turing machine
model (Section 3.7) introduced in 1936 [337], the finite-state machine did not become a se-
rious object of study until the 1950s. Mealy [214] and Moore [222] introduced models for
finite-state machines that were shown to be equivalent. The Moore model is used in Sec-
tion 3.1. Rabin and Scott [265] introduced the nondeterministic machine, although not de-
fined in terms of external choice inputs as it is defined here.

The simulation of finite-state machines by logic circuits exhibited in Section 3.1.1 is due
to Savage [284], as is its application to random-access (Section 3.6) and deterministic Tur-
ing machines (Section 3.9.1) [285]. The design of a simple CPU owes much to the early
simple computers but is not tied to any particular architecture. The assembly language of
Section 3.4.3 is borrowed from Smith [311].

The shallow circuits simulating finite-state machines described in Section 3.2 are due to
Ladner and Fischer [185] and the existence of a universal Turing machine, the topic of Sec-
tion 3.7, was shown by Turing [337].

Cook [74] identified the first NP-complete problem and Karp [158] demonstrated that a
large number of other problems are NP-complete, including the Traveling Salesperson prob-
lem. About this time Levin [198] (see also [334]) was led to similar concepts for combinatorial
problems. Our construction in Section 3.9.1 of a satisfiable circuit follows the general out-
line given by Papadimitriou [234] (who also gives the reduction to SATISFIABILITY) as well
as the construction of a circuit simulating a deterministic Turing machine given by Savage
[285]. Cook also identified the first P-complete problem [75,79]. Ladner [184] observed
that the circuit of Theorem 3.9.1 could be written by a program using logarithmic space,
thereby showing that CIRCUIT VALUE is P-complete. More information on P-complete and
NP-complete problems can be found in Chapter 8.

The more sophisticated simulation of a circuit by a Turing machine given in Section 3.9.7
is due to Pippenger and Fischer [251] with improvements by Schnorr [300] and Savage, as
cited by Schnorr.


