
C H A P T E R

VLSI Models of Computation

The electronics revolution initiated by the invention of the transistor by Schockley, Brattain,
and Bardeen in 1947 accelerated with the invention of the integrated circuit in 1958 and 1959
by Jack Kilby and Robert Noyce. An integrated circuit contains wires, transistors, resistors,
and other components all integrated on the surface of a chip, a piece of semiconductor material
about the size of a thumbnail. And the revolution continues. The number of components that
can be placed on a semiconductor chip has doubled almost every 18 months for about 40 years.
Today more than 10 million of them can fit on a single chip. Integrated circuits with very large
numbers of components exhibit what is known as very large-scale integration (VLSI). This
chapter explores the new models that arise as a result of VLSI.

As the size of the electronic components decreased in size, the area occupied by wires
consumed an increasing fraction of chip area. In fact, today some applications devote more
than half of their area to wires. In this chapter we examine VLSI models of computation
that take this fact into account. Using simulation techniques analogous to those employed in
Chapter 3, we show that the performance of algorithms on VLSI chips can be characterized
by the product AT 2, where A is the chip area and T is the number of steps used by a chip
to compute a function. We relate AT 2 to the planar circuit size Cp,Ω(f) of a function f , a
measure that plays the role for VLSI chips that circuit size plays for FSMs. The AT 2 measure
is the direct analog of the measure CΩ(δ,λ)T for the finite-state machine that was introduced
in Chapter 3, where CΩ(δ,λ) is the size of a circuit to simulate the next-state and output
functions of the FSM. We also relate the measure A2T to Cp,Ω(f).

575

576 Chapter 12 VLSI Models of Computation Models of Computation

12.1 The VSLI Challenge
The design of VLSI chips represents an enormous intellectual challenge akin to that of con-
structing very large programs. They each involve the assembly of millions of elements, instruc-
tions in the case of software, and electronic components in the case of chips. The design and
implementation of VLSI chips is also challenging because it involves many steps and many
technologies. In this section we provide a brief introduction to this process as preparation
for the introduction of the VLSI models and algorithms that are the principal topics of this
chapter.

12.1.1 Chip Fabrication
A VLSI chip consists of a number of conducting, insulating, and doped layers that are placed
on a semiconductor substrate. (A doped layer is created on the surface of the substrate by
infusing small concentrations of impurities into the semiconductor. This is called doping.)
The layers are created using masks, templates with open regions through which ionizing radi-
ation is projected onto the surface of the semiconductor. The radiation changes the chemical
properties of a previously deposited photosensitive material so that the exposed regions can
be washed away with a solvent. The material that is now exposed can be doped or removed.
Doping is used to create transistors and wires. A removal step is used when a metallic layer has
been previously deposited from which sections are to be removed, leaving wires. A chip may
have several layers of wires separated by layers of insulating material in addition to the doped
layers that form transistors and wires. The layout of a NAND gate is shown schematically in
Fig. 12.1, in which the shadings of rectangles and annotations identify to a chip designer the
types of materials used to realize the gate.

c

Vss

p-plus

p-well

Vdd

ba

c

a b

(a) (b)

Figure 12.1 The schematic layout of a NAND gate and its logical symbol.

c©John E Savage 12.1 The VSLI Challenge 577

Geometric design rules specify the amounts of overlap of and separation between metal and
dopant rectangles that are needed to guarantee the desired electrical and electronic properties of
a VLSI circuit. If wires are too thin, electrons, which move through them at very high speeds,
can cause excess heating as well as dislodge atoms and create an open circuit (this is called
metal migration), especially at points at which a wire bends to descend into a well created
during chip fabrication. Similarly, if wires are too close, an error in registration of masks may
cause short circuits between wires. Also, since transistors are constructed through the doping
and overlaying of insulating and conducting materials, if the regions defining a transistor are
too small, it will not behave as expected.

The geometric design rules for a particular chip technology can be quite complex. For the
purpose of analysis they are simplified into a few rules concerning the width and separation
of rectangles, the amount of area required for contacts between wires on layers separated by
insulation, and the size of the various rectangular regions that form gates and transistors. As
suggested by this discussion, a VLSI chip is quasiplanar; that is, its components lie on a few
layers, which are separated by insulation except where contacts are made between layers.

12.1.2 Design and Layout
Many tools and techniques have been developed to address the complexity of chip layout.
Typically these tools and techniques use abstraction; that is, they decompose a problem into
successively lower level units of increasing complexity. At each level the number of units in-
volved in a design is kept small so that the design is comprehensible.

The design of a VLSI chip begins with the specification of its functionality at the func-
tional or algorithmic level. Either a function or an algorithm is given as the starting point.
An algorithm is then produced and translated into a specification at the architectural level.
At this level a chip is specified in terms of large units such as a CPU, random-access memory,
bus, floating-point unit, and I/O devices. (The material of Chapters 3 and 4 is relevant at this
level.) After an architectural specification is produced, design commences at the logical level.
Here particular methods for realizing architectural units are chosen. For example, an adder
could be realized either as a ripple or a carry-lookahead adder depending on the stated speed
and cost objectives. (The material of Chapter 2 applies at this level.)

At the gate level, the next level in the design process, a technology, such as NMOS and
CMOS, is chosen in which to realize the transistors and wires. This involves specifications of
widths for wires, the number of layers of metal, and other things. If new transistor layouts are
used, their physics is often simulated to determine their electrical properties.

At the next level, the layout level, a gate-level design is translated into physical positions for
modules, gates, and wires. Often at this level a rough layout is produced manually, after which
automatic routing and compaction algorithms are invoked to route wires between modules
and squeeze out the unnecessary area. Space must be reserved on each layout for I/O pads,
rectangular regions large enough to connect external wires. They serve as ports through which
data is read and written. Because these wires and pads are very large by comparison with the
wires on the chip, there is a practical limit on the number of I/O ports on a chip. A port can
be both an input and an output port.

Once a layout is complete it is usually simulated logically, that is, at the level of Boolean
gates. Parts of it may also be simulated electrically, a much more time-consuming process given
the much lower level of detail that it entails.

578 Chapter 12 VLSI Models of Computation Models of Computation

After a chip has been fabricated it is then tested. Because the testing process for a complete
chip cannot be exhaustive, due to the number of configurations that are possible, subunits are
often isolated and tested. Testing circuitry is often built into a chip to simplify the testing
process.

Because the design, layout, simulation, and testing of VLSI chips is complex and error
prone, computer-aided design (CAD) tools have been developed. CAD is very large subject
beyond the scope of this book. Instead, we limit our attention in this chapter to the perfor-
mance of VLSI chips.

12.2 VLSI Physical Models
Of all the parameters that affect the performance of a VLSI chip, its area is one of the most
important. Equally important are the width of and separation between wires, both of which
are directly related to area. Area is important for two reasons. First, a larger area means a chip
can have more computing elements and do more work. Also, more area means a chip can have
more I/O ports to facilitate data movement on and off the chip.

Unfortunately, the area of a chip has a practical limit due to imperfections that occur in the
chip manufacturing process. A single very small piece of dust or a dislocation in the crystalline
semiconductor substrate, each of which can be large by comparison with the dimensions of
components, can destroy a chip. As a consequence, only a small fraction (the yield) of the
chips resulting from a fabrication process work. The rest must be discarded.

The yield of a chip is very sensitive to its size. If the number of faults per unit area is
F , with very high probability a fault occurs if the area A of a chip exceeds 1/F . As F is
reduced by improvements in the manufacturing process, the area of any one chip can increase.
However, if F is fixed, so is the value of A at which an economical yield is possible. (F has
not decreased much over time.) To make chip manufacture economical, dozens of chips are
manufactured together on a circular wafer of 4 to 8 inches in diameter. The wafer is then sliced
into individual chips. If the die size is chosen correctly, a fixed fraction of the chips on a wafer
will work. The importance of testing becomes evident in light of these observations.

Because the area of a chip has a practical upper limit, the width and separation of wires
determine the number of components that can be placed on a chip. As mentioned above, the
technology for chip manufacture places a lower limit on these parameters as well as the area of
chip components.

To simplify our modeling and analysis, we assume that the minimal width and separation
of wires is λ (the minimum feature size) and that each gate, memory cell, port, and pair
of crossing wires has area λ2. There is no great loss in assuming a single number for wire
width and separation and one number for the minimal area of components because in practice
the width and separation of wires of different kinds and the area of components are all small
multiples of common values. The only component for which these assumptions are weak is
the pads for I/O ports, which are generally very much larger than λ2. It is important to be
cognizant of this fact in drawing conclusions.

Since chips are quasiplanar, we assume that each chip has at most ν ≥ 1 layers on which
wires can reside but that there is only one layer of gates. Also, since wires are rectangular, it
is impractical for them to meet at angles that are not close to 0 or 45 degrees. In fact, wires
are usually rectilinear, that is, run horizontally and vertically. Thus, we assume that wires are
rectilinear.

c©John E Savage 12.3 VLSI Computational Models 579

To complete the physical modeling of chips we recognize three types of transmission
model, the synchronous, transmission-line, and diffusion models. The synchronous model
assumes that one unit of time is needed to transmit a bit across a wire, independent of its
length. This is a good model when the switching time of gates is large by comparison with
the time to transmit data through a wire or when wires are short, a situation that prevails for
most designs. When it does not prevail, the unit of transmission time can be increased so that
it does apply. The transmission-line model assumes that the time to transmit a bit across a
wire is proportional to its length (see Problems 12.1 and 12.2), whereas the diffusion model
assumes it is quadratic in its length. The models apply to VLSI chip technologies at different
wire lengths. The synchronous, transmission-line, and diffusion models apply to wires that are
short, medium-length, and long, respectively.

Although we do not examine energy consumption in this chapter, the type of gate used
can have a large impact on the amount of energy consumed during a computation. NMOS
transistors consume energy all the time, whereas CMOS transistors consume energy only when
they change their state.

When the area of I/O pads and gates are comparable, the placement of the pads on a VLSI
chip can have a big impact on the area occupied by a chip. For example, if the chip realizes a
tree and its n leaves (and their pads) are placed on the boundary of a convex region, as noted
in Problem 12.3, the chip must have area proportional to n log n. However, as shown in
Section 12.5.1, when its leaves can be placed anywhere, there is a layout for a tree (known as
the H-tree) that has area proportional to n. If the I/O pads are much larger than the gates, the
impact of their placement is diminished.

12.3 VLSI Computational Models
We assume that a VLSI chip implements a finite-state machine instantiated as a clocked se-
quential machine. (A chip could also model an analog computer rather than a digital one, a
topic not discussed in this book.) Although every FSM is eventually realized from two-input
gates, binary memory cells, and wires carrying binary values (see Section 3.1), chips are gener-
ally designed around an aggregate model for data. That is, if operations are done on integers,
the wires associated with an integer travel together on the chip surface. Although the time re-
quired for an operation on data depends on the size of alphabet from which the data is drawn
and on the complexity of the operation itself, we simplify the analysis by assuming that one
unit of time is taken. A more sophisticated analysis takes these factors into account.

To be concrete we let the states of an FSM be represented as tuples over a set X of binary
b-tuples. We also assume that gates realize functions {h : X2 #→ X} and that memory cells
hold one value of X . We recognize a logic circuit over the set X as the graph of a straight-line
in which the operations are drawn from a basis {h : X2 #→ X}. This model is used to study
problems defined over non-binary alphabets, such as matrix multiplication and the discrete
Fourier transform over rings.

We continue to use the notation λ for the minimum feature size of a VLSI chip even
though we now allow data to be treated as values in the set X . When the set X is big, it will
be important to make use of its size in accounting for the area occupied by wires and gates, an
issue that we ignore in this chapter.

Computation time in the synchronous model is the number of steps executed by a chip.
This is the same measure of time used for finite-state machines. Computation time in the

580 Chapter 12 VLSI Models of Computation Models of Computation

other models is the elapsed time in seconds, which is approximated by the number of steps
multiplied by the length of the longest step. This time is generally a function of the area of the
chip and the problem for which the chip is designed.

Another measure of time, but one that is given only a cursory examination, is the period
P of a VLSI chip. This is the time between successive inputs to a pipelined chip, one designed
to receive a new set of inputs while the previous inputs are propagating through it. Pipelining
is illustrated in Section 12.5.1 on H-trees and Section 11.6 on block I/O.

In this chapter we assume that VLSI chips compute a single function f : Xn #→ Xm,
a perfectly general assumption that allows any FSM computation to be performed. While
this allows the VLSI chip to be a CPU or a RAM, to convey ideas we limit our attention
to functions that are simply defined, such as matrix multiplication and the discrete Fourier
transform.

The variables of the function computed by a VLSI chip are supplied via its I/O ports. A
single port can receive the values of multiple variables but at different time instances. Also,
the value of a variable can be supplied at multiple ports, either in the same time step or in
multiple time steps. However, the outputs of a function computed by a chip are supplied once
to an output port. As noted above, a port can be either an input or output port or serve both
purposes, but not in the same time step.

As with the FSM, we cannot allow either the time or the I/O port at which data is received
as input or is supplied as output to be data-dependent. To do otherwise is to assume that an
external agent not included in the model is performing computations on behalf of the user.
We can expect misleading results if this is allowed. Thus, we assume that each I/O operation
is where- and when-oblivious; that is, where an input or output occurs is data-independent,
as are the times at which the I/O operations occur.

For many VLSI computations it is important that the input data be read once by the
chip even if it may be convenient to read it multiple times. (These are called semellective or
read-once computations.) For example, if a chip is connected to a common bus it may be
desirable to supply the data on which the chip operates once rather than add hardware to the
chip to allow it to request external data. However, in other situations it may be desirable to
provide data to a chip multiple times. Such computations are called multilective. Multilective
computations must be where- and when-oblivious.

If a multilective VLSI algorithm reads its n input variables βµn times but only µn times
when multiple inputs of a variable (at multiple time steps) at one I/O port are treated as a
single input, then the algorithm is (β, µ)-multilective.

12.4 VLSI Performance Criteria
As stated in Theorem 7.4.1, the product pTp of the time, Tp, and the number of processors, p,
in a parallel network of RAM processors to solve a problem cannot be less than the serial time,
Ts, on a serial RAM with the same total storage capacity for that problem. Applying this result
to the VLSI model, since the number of processors of any given size that can be placed on a
chip of area A is proportional to A, it follows that the product AT of area with the time T
for a chip to complete a task cannot be less than the serial time to compute the same function
using a single processor; that is, AT = Ω(Ts).

In the next section we show that the matrix-vector multiplication and prefix functions can
be realized optimally with respect to the AT measure. This holds because these problems have

c©John E Savage 12.5 Chip Layout 581

low complexity. For problems of higher complexity, such as n×n matrix-matrix multiplication,
we cannot achieve AT -optimality because stronger lower bounds apply. In particular, both
AT 2 and A2T must grow as n4 for this problem, as we show. AT , AT 2 and A2T are the only
measures of VLSI performance considered in this chapter.

12.5 Chip Layout
In this section we describe and discuss layouts for a number of important graphs and problems.
These include balanced binary trees, multi-dimensional meshes, and the cube-connected cycle.

12.5.1 The H-Tree Layout

H-trees are embeddings of binary trees that use area efficiently. Let Hk be an H-tree with 4k

leaves. Figure 12.2 shows the H-tree H2 with 16 darkly shaded squares that can be viewed
either as subtrees or leaves. The lightly shaded regions are internal vertices of the binary tree.
Leaves often perform special functions that are not performed by internal vertices whereas
internal vertices of a tree often perform the same function. Each quadrant of the tree shown in
Fig. 12.2 can be viewed as the H-tree H1 on four subtrees or leaves.

The layout of Hk is recursively defined as follows: replace each of the four leaves of Hk−1

with a copy of H1. Thus, H2 in Fig. 12.2 is obtained by replacing each leaf in H1 with a copy
of H1.

We now derive an upper bound on the area of an H-tree under the assumption that each
vertex is square, leaf vertices occupy area b2, and the separation between leaf vertices is c. If
S(k) is the length of a side of Hk, then S(1) = 2b + c. Also, from the recursive construction
of Hk the following recurrence holds:

S(k) = 2S(k − 1) + c

Figure 12.2 The H-tree H2 containing 16 subtrees (or leaves).

582 Chapter 12 VLSI Models of Computation Models of Computation

The solution to this recurrence is S(k) = (b + c)2k − c as the reader can verify. Since
Hk has n = 4k leaves and area An = (S(k))2, it follows that an n-vertex H-tree has area
An ≤ n(b + c)2.

To appreciate the importance of the H-tree construction, observe that its leaves are interior
to the layout. Given the usual drawing of a binary tree one is tempted to place its leaves along
the boundary of a chip. If this boundary is convex, the area of a binary tree on n leaves must
be at least proportional to n log n. (See Problem 12.3.)

MATRIX-VECTOR MULTIPLICATION ON AN H-TREE We now describe an algorithm based on an
H-tree that multiplies an n×n matrix A with an n-vector x, n = 2k, by forming the n inner
products of the n rows of A with x. (Matrix-vector multiplication is defined in Section 6.2.2.)
This algorithm assumes that one unit of time is taken to store one piece of data and to perform
an addition or multiplication on data.

On the first time step of our algorithm the components of the vector x are supplied in
parallel to the n leaves of the tree and stored there. On the second time step components of
the first row of A are also provided in parallel to the leaves. In the third time step the product
of corresponding components of x and the first row of A are multiplied. In k = log2 n
additional time steps these products are added in the H-tree and the result supplied as output.
In the next two steps the second row of A is supplied as input and its components multiplied
by those of x. After k additional steps these products are summed and the result generated
as output. This process is repeated for each of the remaining rows of A. This algorithm is
semellective.

Since we treat the time to add and multiply as the basis for measuring the time required
by this H-tree, each inner product requires O(log n) time and the n inner products require
O(n log n) time. However, if each addition vertex in this tree can also store its result (thereby
causing a slight increase in area), a new row of A can be supplied to the H-tree in each unit
of time (we say the period of the computation is P = 1) because a series of partial results
can move through the tree in parallel. This is an example of pipelining. In this case the time
to perform the n inner products is O(n + log n) = O(n). If pipelining is not used, this
matrix-vector multiplication algorithm does not make the best use of area and time, as we now
show.

Even without pipelining there exists an AT optimal algorithm for matrix-vector multipli-
cation. Let n be such that n/ log2 n is a power of 4. Decompose each row of A as well as x
into (log2 n)-tuples. This is equivalent to representing the n×n matrix A by a n×(n/ log2 n)
matrix B whose entries are 1 × log2 n matrices (equivalently, (log2 n)-vectors) and to repre-
senting x by an (n/ log2 n)-vector y whose components are (log2 n)-vectors.

We implement this computation on an H-tree with O(n/ log n) area. To compute the
inner product of A’s jth row with x, sequentially supply to each H-tree leaf the components
of one (log2 n)-vector of y and the corresponding vector in the jth row of B. Supply the
individual components of these (log2 n)-vectors in alternate cycles. After a leaf vertex receives
the corresponding components of A and x, it multiplies them and adds the result to its running
sum. Upon completion of an inner product of two (log2 n)-vectors, the leaf vertices make their
values available to be added in the H-tree in O(log n) steps. After n of these operations, all n
inner products of Ax are computed.

This algorithm uses T = O(n log n) time but only has area A = O(n/ log n). Thus,
its area–time product satisfies AT = O(n2), which is optimal since each of the n2 + n

c©John E Savage 12.5 Chip Layout 583

components of A and x must be read. This algorithm is multilective because it supplies each
component of x n times.

PREFIX COMPUTATION ON AN H-TREE The H-tree is also an effective way to do a prefix com-
putation. Prefix computations (let (be the associative operator) are naturally executed on
trees. A tree-based prefix computation is described in Problem 7.31. One datum enters the
root of the tree; the rest travel up from the leaves. When implemented on an H-tree, this algo-
rithm uses area O(n) on n inputs and time O(log n), giving an AT product of O(n log n).
This algorithm is semellective.

This algorithm can be converted into an AT -optimal algorithm using a technique similar
to that used above. We subdivide the input n-tuple x into (log2 n)-tuples, of which there are
(n/ log2 n), and serially form the associative combination of the (log2 n) components of each
tuple using (in (log2 n) steps. We then perform the prefix computation on these (n/ log2 n)
results. To complete the computation, for 1 ≤ j ≤ (n/ log2 n) − 1 we reread each of the
original (log2 n)-tuples in parallel and add the (j − 1)st result (the zeroth result is 0) to the
first component of the jth (log2 n)-tuple, and then serially perform a prefix computation on
these new (log2 n)-tuples.

We increase (n/ log2 n) to the next power of 4 (adding inputs whose corresponding out-
puts are ignored) and embed the tree of Fig. 7.23 directly into an H-tree. The initial associative
combination of (log2 n)-tuples and the final prefix computation on (log2 n)-tuples are done
at vertices of the H-tree that are I/O vertices of the prefix tree. This algorithm takes time
O(log n) on the initial and final phases as well as on the prefix computation. Since the area of
the layout is O(n/ log2 n) and every one of the n inputs must be read, its area–time product,
AT , is O(n) which is optimal. This algorithm is multilective since each input is supplied
twice.

12.5.2 Multi-dimensional Mesh Layouts
As explained in Section 7.5, many important problems can be solved with systolic arrays. If
the cells of one- and two-dimensional systolic arrays are of fixed size and quasiplanar, they can
be embedded directly onto a chip with area proportional to the number of cells. Applying the
results of Theorems 7.5.1, 7.5.2, and 7.5.3 we have the following facts concerning the area and
time for three important problems when realized by such arrays.

Problem Dimensions Area Time

n × n Matrix-Vector Multiplication 1D O(n) O(n)

Bubble Sort of n items 1D O(n) O(n)

Batcher’s Odd-Even Sorting of n items 1D O(n) O(n)
√

n ×
√

n Matrix-Matrix Multiplication 2D O(n) O(
√

n)

Fully normal algorithms for problems such as shifting, summing, broadcasting, and fast
Fourier transform on n = 22d inputs can each be done in O(log n) steps on the n-vertex hy-
percube or the canonical cube-connected cycles network on n vertices. From Theorems 7.7.4
and 7.7.5 these problems can also be solved in O(n) and O(

√
n) steps, respectively, on n-

vertex one- and two-dimensional systolic arrays. We summarize these facts in Figure 12.3.

584 Chapter 12 VLSI Models of Computation Models of Computation

Problem Dimensions Area Time

Shifting of n-vector 1D O(n) O(n)
2D O(n) O(

√
n)

Summing n items 1D O(n) O(n)
2D O(n) O(

√
n)

Broadcasting to n locations 1D O(n) O(n)
2D O(n) O(

√
n)

n-point FFT 1D O(n) O(n)
2D O(n) O(

√
n)

Figure 12.3 Area vs. time performance of VLSI algorithms for four problems.

In Section 12.6 we show that shifting of an n-vector, the n-point FFT, and n × n matrix-
matrix multiplication each require area A and time T satisfying AT 2 = Ω(n2). Consequently,
the 2D algorithms cited above for these problems are optimal to within a constant factor.

In the next section we now show that every normal algorithm can be implemented on
the cube-connected cycles (CCC) network in time T satisfying Ω(log n) ≤ T ≤ O(

√
n)

and that the CCC network can be embedded in the plane using area A = O(n2/T 2). In
Theorems 12.7.2 and 12.7.3 we show that these implementations are optimal up to constant
multiplicative factors with respect to area and time for the three problems mentioned above.

12.5.3 Layout of the CCC Network
In Section 7.7.6 we describe the realization of a fully normal algorithm on the canonical CCC
network. The realization extends directly from the canonical CCC network to a general (k, d)-
CCC network in which there are 2d cycles and 2k vertices on each cycle. (See Fig. 12.4.)

A fully normal algorithm is simulated on the CCC network by giving the processors on
the jth cycle, 0 ≤ j ≤ 2d − 1, the addresses i + j2k where 0 ≤ i ≤ 2k − 1. The cycles
are treated as 1D arrays and used to simulate a normal algorithm on the first k dimensions
exactly as is done in Section 7.7.6. These simulations are done in parallel after which the
swaps across the higher-order d dimensions are simulated by first rotating the leading element
on each cycle to the first of the inter-cycle edges. After executing one swap, each cycle is
advanced one step so that the second elements on each cycle are aligned with the first of the
high-order dimensions. At this point the first elements on each cycle are aligned with the edge
associated with the second of the high-order dimensions. Thus, while swaps are done between
the second elements on each cycle across the first of the high-order dimensions, swaps occur
between leading elements along the second of the high-order dimensions. This rotating and
swapping is done until all cycle elements have been swapped across all high-order dimensions.

This algorithm performs O(2k) steps on the cycles to perform swaps across low-order
dimensions and align the cycles for swaps at higher dimensions. An additional O(d) steps are
used to perform swaps on the d high-order dimensions. Thus, the number of steps used by
this algorithm, T , satisfies T = O(2k + d). The number of processors used in (k, d)-CCC
network, n, satisfies n = 2d+k.

c©John E Savage 12.5 Chip Layout 585

Figure 12.4 An embedding of a (k, d)-CCC network in the plane for k = 3 and d = 4. The
2d columns represent cycles of length 2k ≥ d. For 1 ≤ j ≤ d, the jth vertex on each cycle is
connected to the jth vertex on another cycle.

Figure 12.4 shows a layout of a (3, 4)-CCC network. A layout for a general (k, d)-CCC
network, 2k ≥ d, can be developed following this pattern. Place each cycle of length 2k in
a column. Use 2d − 1 rows to make connections between columns. These rows are divided
into d sets. The first set, consisting of one row, connects adjacent columns. The second
set, containing two rows, connects every other column. The jth set, containing 2j−1 rows,
connects every 2jth column. The number of rows used for these connections is 1 + 2 + 4 +
· · · + 2d−1 = 2d − 1. Since d processors are used in each column to make these connections,
each column contains 2k − d ≥ 0 processors not connected to other columns. (These are
suggested by the lightly shaded vertices.) It follows that this layout has 2d + 2k − (d+ 1) rows
and 2d+1 columns. If a wire is assumed to have the same width as a processor, the layout has
area A = 2d+1(2d + 2k − (d + 1)).

Recall that n = 2d+k and 2k ≥ d or k ≥ log2 d. It follows that T = Θ(2k+d) = Θ(2k).
Since k ≥ log2 d, T = Ω(d) = Ω(log n). Also, when k ≤ d, 22k ≤ n and T ≤ O(

√
n). We

summarize this result below.

THEOREM 12.5.1 Every fully normal algorithm for a n-processor hypercube can be implemented
on a CCC network whose VLSI layout has area A and uses time T satisfying the following bound
for Ω(log n) ≤ T = O(

√
n).

AT 2 = O(n2)

586 Chapter 12 VLSI Models of Computation Models of Computation

This result can be applied to any of the fully normal algorithms described in Section 7.6
and the Beneš permutation network discussed in Section 7.8.2.

12.6 Area–Time Tradeoffs
The AT 2 measure encountered in the last section is fundamental to VLSI computation. This
is established by deriving a lower bound on AT 2 in terms of the planar circuit complexity,
Cp,Ω(f), of the function f computed by a VLSI chip of area A in T steps. A similar result is
derived for the product A2T . The planar circuit size of f is the size of the smallest memoryless
planar circuit for f . The measures AT 2 and A2T are the sizes of two different memoryless
planar circuits that compute the same mapping from inputs to outputs as a VLSI chip of area
A that executes T steps.

12.6.1 Planar Circuit Size
We now formally define planar circuit size and show how it relates to the standard circuit size
measure.

DEFINITION 12.6.1 A planar circuit over the set X is a logic circuit over the set X that has been
embedded in the plane in such a way that gates do not overlap but edges may cross. A planar circuit
is semellective if there is a unique vertex at which each input variable is supplied. Otherwise, the
planar circuit is multilective.

The size of a planar circuit is the number of inputs, edge crossings, and gates drawn from
a basis Ω = {h : X2 #→ X} that the circuit contains. The planar circuit size of a function
f : Xn #→ Xm over Ω, Cp,Ω(f), is the size of the smallest planar circuit for f over the basis Ω.

A multilective circuit of order µ, µ ≥ 1, for a function f : Bn #→ Bm has µn input vertices.

The size of the smallest multilective planar circuit of order µ for f is denoted C(µ)
p,Ω(f). If the planar

circuit is semellective, the planar circuit size of f is denoted C(1)
p,Ω(f) or Cp,Ω(f) when confusion

is not likely.

Every binary function has a planar circuit. To see this, observe that every function has a
circuit, which is a graph, and that every graph has a planar embedding with edge crossings.
The planar circuit size of a function is at worst quadratic in its standard circuit size, as we now
show.

LEMMA 12.6.1 The (multilective) planar circuit and standard size of f : Bn #→ Bm relative to
the basis Ω are in the following relationship where r is the fan-in of Ω.

CΩ(f) + n ≤ Cp,Ω(f) ≤ r2C2
Ω(f)/2 + CΩ(f) + n

Proof The first inequality follows because the planar circuit size measure includes inputs,
crossings, and gates, whereas the circuit size measure includes only gates.

Consider an embedding of a standard circuit for f containing CΩ(f) gates. In such
an embedding it is not necessary for any two edges to intersect more than once because if
they violate this condition the edge segments between any two successive crossings can be
swapped so that these two crossings can be eliminated. Since every gate has at most r inputs,
a minimal standard circuit for f has at most rCΩ(f) edges connecting gates. It follows that

c©John E Savage 12.6 Area–Time Tradeoffs 587

(b)(a)

Figure 12.5 Two simulations of a T -step VLSI chip computation by a planar circuit.

the number of crossings does not exceed r2CΩ(f)2/2 because there are at most
(q

2

)
ways of

forming pairs drawn from a set of size q and q = rCΩ(f). Combining this with the number
of inputs and gates, we have the desired upper bound.

In Section 12.7 we show that f (n)
cyclic nearly meets the upper bound of Lemma 12.6.1. That

is, the planar circuit size of this function is nearly quadratic in its standard circuit size.

12.6.2 Computational Inequalities
We now show that every VLSI chip computation can be simulated by planar circuits of size
O(AT 2) and O(A2T). The simulation is patterned on the simulations of Chapter 3; that is,
the loop that constitutes the computation by the chip with memory is unwound to create a
planar circuit. Instead of passing the outputs of the next-state/output circuit to binary memory
cells they are passed to another copy of the circuit.

Figure 12.5 shows two simulations of a T -step VLSI chip computation by a planar circuit.
The first is obtained by placing T copies of the chip one above the other and supplying the
state output of one copy to the state input of the next copy. The second is simulated by placing
T copies of the chip side by side and running wires from the state output of one chip to the
state input of the next. We convert each of these memoryless circuits to planar circuits and
bound the number of inputs, crossings and gates they contain. Recall that we assume that
wires are rectilinear; that is, they run only horizontally and vertically.

Since the number of wire layers on a single chip is bounded, it does not hurt to assume
that the centerlines of parallel wires on different planes are displaced slightly. (It is bad practice
to overlap wires because one wire can induce currents in the other.) Now make the width of
wires and the area of gates infinitesimal. (Wires are shrunk to their centerline.) As shown in
Fig. 12.6(a), each two-input gate is replaced by an infinitesimal vertex connected by a straight-
line to its output and the two connections from its inputs are made by wires that contain bends
(two wires touch). This converts a single chip to a planar graph with wires that touch or cross.
(See Fig. 12.6(b) and (c)).

We now bound nw, the number of wires, and ng, the number of gates on a chip of area
A. Since each wire has width λ and length at least λ and each gate occupies area λ2, nw and

588 Chapter 12 VLSI Models of Computation Models of Computation

(a) (b) (c)

Figure 12.6 (a) The result of shrinking a physical gate to a point. (b) A crossing of two wires,
and (c) four types of connection between two wires.

ng satisfy the following bounds.

nw ≤ A/λ2

ng ≤ A/λ2

Because each point of crossing or touching of wires occupies area at least λ2, the number
of points at which wires cross and touch on each of the ν layers of a chip that has area A is
at most A/λ2. As shown in Fig. 12.6(a), when gates are made infinitesimal two additional
bends are created at the point at which the output wire touches the gate. This can be viewed
as adding four wire bends per gate. Since the number of gates is at most A/λ2, we have the
following bound on ncr, the number of wire crossings and touchings.

ncr ≤ (ν + 4)A/λ2

Consider the first of the two simulations. T layers of one chip are placed one above the
other. To expose overlapping wires, displace all layers to the northeast by an infinitesimal
amount. Every pair of wires that cross or meet has the potential to introduce crossings, as
suggested in Fig. 12.7(a) and (b). The maximum number of crossings that can be introduced
per touching or crossing of wires is T 2. Since the number of input vertices is O(AT), this
provides an upper bound of O(AT 2) on the number of inputs, gates, and crossings of the
resultant planar circuit.

Now consider the second simulation. T copies of one chip are laid side-by-side and the
layout of each chip opened and at most nw parallel wires inserted to make connections to
adjacent chips. Since there are nw wire segments on a single chip, at most n2

w new wire
crossings are introduced on one chip. Thus, the number of inputs, gates, and crossings in this
layout is O(AT + n2

wT) = O(A2T).
The following theorem, which is an application of Theorem 3.1.1 to the VLSI model,

summarizes the above results. It makes use of the fact the planar circuit size of a function
f computed by a VLSI chip of the kind described above is no larger than that of the planar
circuits just constructed. This theorem demonstrates the importance of the measures AT 2 and
A2T as characterizations of the complexity of VLSI computations. It also shows that lower
bounds on the performance of VLSI chips can be obtained in terms of the planar circuit size
of the functions computed by them.

c©John E Savage 12.6 Area–Time Tradeoffs 589

T

(a)

T

(b)

T

T

Figure 12.7 Crossings obtained by translating infinitesimally to the northeast T copies of (a)
one crossing and (b) the four possible connections between two wires.

THEOREM 12.6.1 Let f (T)
M be the function computed by a VLSI chip that realizes the FSM M

in T steps. The planar circuit size over a basis Ω = {h : X2 #→ X} of any function f computed
by M in T steps satisfies the following inequalities:

Cp,Ω0(f) = O(AT 2)

Cp,Ω0(f) = O(A2T)

If M is multilective of order µ, then Cp,Ω(f) is replaced by C(µ)
p,Ω(f).

It is important to note that these relationships between planar circuit size and the mea-
sures AT 2 and A2T hold for all functions computed by VLSI algorithms, both multi-output
functions and predicates.

In the next section we develop the planar separator theorem that is used in the next section
to derive lower bounds on the planar circuit size of important problems.

12.6.3 The Planar Separator Theorem
The planar separator theorem applies to graphs G = (V , E) for which a non-negative cost
function c is defined on V . The cost of V , denoted, c(V), is the sum of the costs of every
vertex in V . The theorem states that the vertices of every planar graph G on N vertices can be
partitioned into three sets, A, B, and C such that no edge connects a vertex in A with one in
B, the cost of vertices in A, c(A), and those in B, c(B), satisfy c(A), c(B) ≤ 2c(V)/3 and
C contains at most 4

√
N vertices.

The following lemma uses the concept of the spanning tree of a graph, a tree that contains
every vertex of a connected graph G. It shows the existence of a cycle that divides a planar graph
into an “inside” and an “outside” containing about the same number of vertices. The radius
of a rooted spanning tree is the number of edges on the longest path from the root to a vertex.
(See Problem 12.8 for an illustration of the following lemma.)

590 Chapter 12 VLSI Models of Computation Models of Computation

LEMMA 12.6.2 Let G = (V , E) be a finite connected planar graph. Let c be a non-negative
cost function defined on V and let c(V) be the total cost of all vertices in V . If G has a rooted
spanning tree of radius r, then V can be partitioned into sets A, B, and C such that c(A), c(B) ≤
2c(V)/3, no edge joins a vertex of A with one of B, and C contains at most 2r + 1 vertices.

Proof Since the lemma is true if the cost of any vertex exceeds 1/3, assume the converse. Let
G = (V , E) be embedded in the plane. A face of a planar graph is a region bounded by
vertices and edges that does not contain any other vertices and edges. The external face of a
finite planar graph is the face of unbounded area. Since G is finite, it has an external face. A
triangular planar graph is a planar graph in which each face is a triangle. If a planar graph
is not triangular, it can be made triangular by choosing one vertex on the boundary of each
face and adding an edge between it and every other vertex on this face to which it does not
already have an edge. Without loss of generality we assume that G is triangular.

Let T be the spanning tree of radius r postulated in the lemma. Each edge e in E not
on T defines a unique cycle ξ(e) of length at most 2r + 1. The cycle divides V into three
sets, vertices on ξ(e), and vertices on each side of ξ(e). Let c1(e) and c2(e) be the cost of
vertices on either side. (The side with the larger cost is called the inside of the cycle.) We
claim that for some e not on T the larger of c1(e) and c2(e) is more than 2c(V)/3. We
suppose the larger is no more than 2c(V)/3 and establish a contradiction.

Let e = (x, y) be an edge not on T such that µ(e) = max(c1(e), c2(e)) is smallest and
for all other e∗ such that µ(e∗) = µ(e) the inside of ξ(e) has the fewest faces. In case of
ties, let e be chosen arbitrarily. We show the assumption that µ(e) > 2c(V)/3 is false.

Consider the triangle containing the edge e = (x, y) on the side of the cycle ξ(e) that
has largest cost. Let z be the third vertex in this triangle. z is on the spanning tree because
every vertex is on the tree. We consider two cases for z: (a) either edge (x, z) or (y, z) is in
T and (b) neither edge is in T .

In case (a) without loss of generality, let (y, z) be in T . There are two subcases to
consider: (a1) z is on ξ(e) (see Fig. 12.8(a)) and (a2) it is not on ξ(e) (see Fig. 12.8(b)). In
(a1) the edge e′ = (x, z) cannot be a tree edge since T contains no cycles unless the cycle
consists of just the vertices x, y, and z, which is impossible since the inside of ξ(e) contains

e

x

ee

xx

(c)(b)(a)

ξ(e) ξ(e)

z z
e′

e′

y y y

z

Figure 12.8 A non-tree edge e = (x, y) in a triangular planar graph with spanning tree T
defines a cycle ξ(e). The triangle containing e on the larger side of ξ(e) contains a third vertex
z. In (a) and (b) (y, z) is on T , whereas in (c) neither (x, z) nor (y, z) is on T . In (a) (y, z) is
on ξ(e), whereas in (b) it is not.

c©John E Savage 12.6 Area–Time Tradeoffs 591

at least one vertex. But ξ(e′) includes the same set of vertices of V inside it (and has the
same cost) as does ξ(e), although it has fewer faces, contradicting the choice for e = (x, y).

In case (a2) the edge e′ = (x, z) is a non-tree edge since T contains no cycles. The inside
of ξ(e′) contains no more cost and one less face than ξ(e). If the cost inside ξ(e′) is greater
than the cost outside, e′ would have been chosen instead of e. On the other hand, if the
cost inside ξ(e′) is at most the cost outside, since the latter is equal to the cost outside ξ(e),
which is at most c(V)/3, the cost inside ξ(e′) is at most c(V)/3. However, this contradicts
the assumption that µ(e∗) > 2c(V)/3 for all edges e∗.

Consider the case (b) in which neither edge (x, z) nor (y, z) is in T . (See Fig. 12.8(c).)
The edges (x, z) and (y, z) each define a cycle contained within ξ(e). Without loss of gen-
erality assume that the cycle defined by (x, z) has more cost on the inside of ξ(e) than does
the cycle defined by (y, z). Because the cost of vertices on the inside of the original cycle is
more than 2c(V)/3, the cost inside and on ξ((x, z)) is more than c(V)/3. Thus, the cost
outside ξ((x, z)) is less than or equal to 2c(V)/3. If the cost inside ξ((x, z)) is also less
than or equal to 2c(V)/3, we have a contradiction. If greater than 2c(V)/3, ξ((x, z)) is a
cycle with fewer faces for which µ((x, z)) > 2c(V)/3, another contradiction.

The following theorem uses Lemma 12.6.2 together with a spanning tree constructed
through a breadth-first traversal of a connected planar graph to show the existence of a small
separator that divides the vertices into approximately two equal cost parts.

THEOREM 12.6.2 Let G = (V , E) be an N -vertex planar graph having non-negative vertex
costs summing to c(V). Then, V can be partitioned into three sets, A, B, and C, such that no edge
joins vertices in A with those in B, neither A nor B has cost exceeding 2c(V)/3, and C contains
no more than 4

√
N vertices.

Proof We assume that G is connected. If not, embed it in the plane and add edges as
appropriate to make it connected. Assume that it has been triangulated, that is, every face
except for the outermost is a triangle.

Pick any vertex (call it the root) and perform a breadth-first traversal of G. This traversal
defines a BFS spanning tree T of G. A vertex v has level d in this tree if the length of the
path from the root to v has d edges. There are no vertices at level q where q is the level one
larger than that of all vertices. Let Rd be the vertices at level d and let rd = |Rd|.

The reader is asked to show that there is some level m such that the cost of vertices
at levels below and above m each is at most c(V)/2. (See Problem 12.9.) Let l and h,
l ≤ m ≤ h, be levels closest to m that contain at most

√
N vertices. That is, rl ≤

√
N and

rh ≤
√

N . There are such levels because level 0 contains a single vertex and there are none
at level q.

The vertices in G are partitioned into the following five sets: a) L =
⋃

d<l Rd, b) Rl,
c) M =

⋃
l<d<h Rd, d) Rh, and e) H =

⋃
h<d Rd. Since L and H are subsets of the

sets of vertices with levels less than and more than m, c(L), c(H) ≤ c(V)/2. Also, by
construction, rl, rh ≤

√
N . If Rl = Rh = Rm (which implies that M is empty and

l = h = m), let A = L, B = H , and C = Rl = Rh. Then, C is a separator of size at
most

√
N and the theorem holds. If l *= h, then h− l− 1 ≥ 0. Since each of the h− l− 1

levels between l and h has at least
√

N + 1 vertices, it follows that h − l − 1 ≤
√

N − 1
because these levels cannot have more than N − 1 vertices altogether.

Consider the subgraph of G consisting of the vertices in M and the edges between them.
Add a new vertex v0 to replace the vertices in L ∪ Rl and add an edge from v0 to each of

592 Chapter 12 VLSI Models of Computation Models of Computation

the vertices at level l + 1. This operation retains planarity and the resulting graph remains
triangulated because adjacent vertices on Rl+1 have an edge between them. Also, it defines a
spanning tree T ∗ consisting of v0, the new edges, and the projection of the original spanning
tree to the vertices in M . T ∗ has radius at most

√
N .

Apply Lemma 12.6.2 to T ∗ giving v0 zero cost. This lemma identifies three sets of
vertices, A0, B0 and C0, from which we delete v0 and adjacent edges. Since c(M) ≤ c(V),
it follows that there are no edges between vertices in A0 and B0, c(A0), c(B0) ≤ 2c(V)/3,
and |C0| ≤ 2

√
N . Let C = C0 ∪ Rl ∪ Rh. It follows that |C| ≤ 4

√
N .

Each of the four sets A0, B0, L, and H has cost at most 2c(V)/3. If any one of them
has cost more than c(V)/3, let it be A and let B be the union of the remaining sets. If none
of them has cost more than c(V)/3 vertices, order the sets by size and let A be the union of
the fewest of these sets whose cost is at least c(V)/3 vertices. This procedure insures that A
has cost between c(V)/3 and 2c(V)/3 which implies that B satisfies the same condition as
A and the theorem is established.

The preceding version of the planar separator theorem only guarantees that the vertices of a
planar graph are divided into two sets whose costs are nearly balanced and a small separator. It
does not insure that the number of vertices in the two sets are balanced. The following lemma
remedies this situation. We leave its proof to the reader. (See Problem 12.10.)

LEMMA 12.6.3 Let G = (V , E) be an N -vertex planar graph having non-negative vertex costs
summing to c(V). Then V can be partitioned into three sets, A, B, and C, such that no edge joins
vertices in A with those in B, neither A nor B has cost exceeding 7c(V)/9, |A|, |B| ≤ 5N/6,
and C contains no more than K1

√
N vertices, where K1 = 4(

√
2/3 + 1).

This new result can be applied to show that the vertices of a planar graph can be partitioned
into many sets each having about the same cost and such that a small set of vertices can be
removed to separate each set from all other sets. This result is also left to the reader. (See
Problem 12.11.)

LEMMA 12.6.4 Let G = (V , E) be an N -vertex planar graph and let c be a non-negative cost
function on V with total cost of c(V). Let P ≥ 2. There are constants 2P/3 ≤ q ≤ 3P and
K2 = 4(

√
2/3 + 1)/(1 −

√
5/6) such that V can be partitioned into q sets, A1, A2, . . . , Aq

such that for 1 ≤ i ≤ q

c(V)/(3P) ≤ c(Ai) ≤ 3c(V)/(2P)

and there are sets Ci, |Ci| ≤ K2

√
N , and Bi = V −Ai −Ci such that no edges join vertices in

Ai with vertices in Bi.

12.7 The Performance of VLSI Algorithms
Using Theorem 12.6.1 and Lemma 12.6.4, we now derive lower bounds on AT 2 and A2T
for individual functions by deriving lower bounds on their planar circuit size. In the following
section we derive lower bounds to the planar circuit size for multi-output functions using the
w(u, v)-flow property of these functions. In Section 12.7.2 we set the stage for deriving lower
bounds on the planar circuit size of predicates.

c©John E Savage 12.7 The Performance of VLSI Algorithms 593

12.7.1 The Performance of VLSI Algorithms on Functions
The w(u, v)-flow property of functions is introduced in Section 10.4.1 and applied to the
study of space–time tradeoffs in the pebble game. In this section we use this property to derive
lower bounds on the semellective planar circuit size of multi-output functions.

DEFINITION 12.7.1 A function f : Xn #→ Xm has a w(u, v)-flow if for all subsets U1 and
V1 of its n input and m output variables with |U1| ≥ u and |V1| ≥ v there is some assignment
to variables not in U1 (variables in U0) such that the resulting subfunction h of f that maps input
variables in U1 to output variables in V1 (the other outputs are discarded) has at least |X|w(u,v)

points in the image of its domain. (Note that w(u, v) ≥ 0.)

A lower bound on planar circuit size of a function f is now derived from its w(u, v)-flow
property. For some functions the parameter P will need to be large for w(u, v) > 0, as is seen
Lemma 12.7.1.

THEOREM 12.7.1 Let f : Xn #→ Xm have a w(u, v)-flow. Then its semellective planar circuit
size must satisfy the following lower bound for u ≥ n(1 − 3/2P), v ≥ m/(3P), and P ≥ 2,
where K2 = 4(

√
2/3 + 1)/(1 −

√
5/6).

Cp,Ω(f) ≥ w2(u, v)

4K2
2

Proof Consider a minimal semellective planar circuit for f : Xn #→ Xm on n inputs con-
taining N = Cp,Ω(f) inputs, gates, and crossings. We apply the version of the planar sepa-
rator theorem given in Lemma 12.6.4 to this circuit by assigning unit weight to each input
vertex and zero weight to all other vertices. For any integer P ≤ |V | we conclude that the
inputs, gates, and crossings of this circuit can be partitioned into q sets {A1, A2, . . . , Aq},
for 2P/3 ≤ q ≤ 3P , such that each set has at least n/(3P) and at most 3n/(2P) input
vertices. Since the average number of output vertices in these sets is m/q, at least one set,
call it A1, has at least the average of output vertices or at least m/3P vertices. Let U0 and
V1 be the sets of inputs and outputs in A1, respectively. Then, n/(3P) ≤ |U0| ≤ 3n/(2P)
and |V1| ≥ m/3P .

For some assignment of values to variables in U0, there are at least |X|w(u,v) values for
the outputs in V1 when u = n − |U0| ≥ n(1 − 3/2P) and v = |V1| ≥ m/(3P). But
all of the values assumed by the outputs in V1 must be assumed by the inputs, gates, and
crossing wires of the separator. Since at most two wires cross, a separator C of size |C| has
at most 2|C| inputs, gates, and wires each of which can have at most |X| values. Thus,
if C1, the separator for A1, has a size satisfying 2|C1| < w(u, v), a contradiction results
and the output variables in V1 cannot assume |X|w(u,v) values. It follows that |C1| ≥
w(u, v)/2. Since C1 ≤ K2

√
N , this implies that N ≥ w2(u, v)/(2K2)2, the desired

conclusion.

We apply this general result to (α, n, m, p)-independent functions and matrix multiplica-
tion. A function is (α, n, m, p)-independent (see Definition 10.4.2) if it has a w(u, v)-flow
satisfying w(u, v) > (v/α) − 1 for n − u + v ≤ p, where n − u ≥ 0.

594 Chapter 12 VLSI Models of Computation Models of Computation

LEMMA 12.7.1 Let f : Xn #→ Xm be (α, n, m, p)-independent. Then for P ≥ (m/3 +
3n/2)/p and m ≥ 2α, f has semellective planar circuit size satisfying the following lower bound:

Cp,Ω(f) ≥ m2

144(αP)2K2
2

Proof f has a w(u, v)-flow satisfying w(u, v) > (v/α) − 1 for n − u + v ≤ p. When
u ≥ n(1 − 3/2P), n − u + v ≤ p is satisfied if v ≤ p − 3n/(2P). Since we also require
that v ≥ m/(3P), this implies that P ≥ (m/3 + 3n/2)/p. Also, v/α − 1 ≥ v/2α if
v ≥ 2α. Substituting m/3P for v, we have the desired conclusion.

In Section 10.5 we have shown that many functions are (α, n, m, p)-independent. We
summarize these results below.

Name Function Independence Property

Wrapped convolution f (n)
wrapped : R2n #→ Rn (2, 2n, n, n/2)

Cyclic shift f (n)
cyclic : Bn+$log n% #→ Bn (2, n + ,log n-, n, n/2)

Integer multiplication f (n)
mult : B2n #→ B2n (2, 2n, n, n/2)

n-point DFT Fn : Rn #→ Rn (2, n, n, n/2)

It follows that for each case Lemma 12.7.1 holds when P ≤ m/(6α). Thus, each of the
(α, n, m, p)-independent function has a planar circuit size that is quadratic in n, its number
of inputs. The following theorem results from this observation and Theorem 12.6.1.

THEOREM 12.7.2 The area A and time T required to compute f (n)
wrapped : R2n #→ Rn,

f (n)
cyclic : Bn+$log n% #→ Bn, f (n)

mult : B2n #→ B2n, and Fn : Rn #→ Rn on a semellec-

tive VLSI chip satisfy the following bounds:

AT 2, A2T = Ω(n2)

The AT 2 lower bound can be achieved up to a constant multiplicative factor for each of these
functions for Ω(log n) ≤ T ≤

√
n.

Proof From Theorem 12.5.1 we know that any fully normal algorithm can achieve the
AT 2 = O(n2) for Ω(log n) = T = O(

√
n) on an embedded CCC network. Since cyclic

shift and FFT are shown to be fully normal (see Section 7.7), we have matching upper and
lower bounds for them. From Problem 12.13 we have that the wrapped convolution can
be realized with matching bounds on AT 2 over the same range of values for T . The same
statement applies to integer multiplication (see Problem 12.16).

In Section 12.6.1 we said that we would exhibit a function whose planar circuit size is
nearly quadratic in its standard circuit size. This property holds for the cyclic shifting function

because, as shown in Section 2.5.2, f (n)
cyclic : Bn+$log n% #→ Bn has circuit size no larger than

O(n log n), whereas from the above its planar circuit size is Θ(n2).
The cyclic shift function is also an example of a function for which most of the chip area

is occupied by wires when T = O(
√

n/ log n), because in this case the area is Ω(n log n) but
the number of gates needed to realize it is O(n log n).

c©John E Savage 12.7 The Performance of VLSI Algorithms 595

Lower bounds on AT 2 and A2T also exist for matrix multiplication. From Lemma 10.5.3

we know that the matrix multiplication function f (n)
A×B : R2n2 #→ Rn2

has a w(u, v)-flow,
where w(u, v) ≥ (v − (2n2 − u)2/4n2)/2. Using this we have the following lower bound on
the planar circuit size of this function.

THEOREM 12.7.3 The area A and time T required to compute the matrix multiplication function

f (n)
A×B : R2n2 #→ Rn2

with a semellective VLSI algorithm satisfies the following lower bound:

AT 2, A2T = Ω(n4)

The AT 2 lower bound can be met to within a constant multiplicative factor.

Proof Apply Theorem 12.7.1 to matrix multiplication by replacing the number of input
variables n by 2n2 and the number of output variables m by n2. The w(u, v)-flow function
has value

w(u, v) = (v − (2n2 − u)2/4n2)/2 ≥ n2

2

(
1

3P
−

(
3

2P

)2
)

The right-hand side is maximized when P = 14 and has value greater than n2/163, from
which the conclusion follows.

As shown in Section 7.5.3, two n×n matrix can be multiplied with area A = O(n2) and
time T = n, which meets the lower bound up to a multiplicative factor. Other near-optimal
solutions also exist. (See Problem 12.15.)

12.7.2 The Performance of VLSI Algorithms on Predicates
The approach taken above can be extended to predicates, functions whose range is B. Again
we derive lower bounds on the size of the smallest planar circuit for a function. However, since
the flow of information from inputs to outputs is at most one bit, we must find some other
way to measure the amount of information that must be exchanged between the two halves
of a planar circuit. An extension of the communication complexity measure introduced in
Section 9.7.1 serves this purpose.

The communication complexity measure of Section 9.7.1 assumes that two players ex-
change bits to compute the value of a Boolean function f : Bn #→ B. The input variables
of f are partitioned into two sets U and V and assigned to two players. Given this partition,
the players choose a protocol (a scheme for alternating the transmission of bits from one to
the other) by which to decide the value of f for every input n-tuple of f . The bits of each
n-tuple are partitioned between the two players according to the division of the n input vari-
ables between the sets U and V . The players then use their protocol to determine the value of
f . The communication complexity C(U , V) of this game is the minimum over protocols of
the maximum over input n-tuples of the number of bits exchanged by the players to compute
f given the partition of the input variables into sets U and V . This measure and its associated
game are naturally extended to predicates f : Xn #→ B, whose variables assume values over
the set X . Players now exchange values drawn from the set X .

We can derive a lower bound on planar circuit size by applying the planar separator theo-
rem. Since this theorem partitions the input variables into three sets, A, B, and a separator C,
where A and B contain at most two-thirds of the total number of input vertices, it is natural

596 Chapter 12 VLSI Models of Computation Models of Computation

to extend the standard communication complexity measure to the following VLSI communi-
cation complexity measure for functions f : Xn #→ B.

DEFINITION 12.7.2 The VLSI communication complexity of a predicate f : Xn #→ B,
CCvlsi(f), is the minimum of the communication complexity C(U , V) over all partitions (U , V)
of the variables of f into two sets of size at most 2n/3.

The following theorem, which is left as an exercise (see Problem 12.17), summarizes the
result of applying the VLSI communication complexity measure CCvlsi(f) together with the
planar separator theorem to derive a lower bound on the semellective planar circuit size of
predicates.

THEOREM 12.7.4 Let f : Xn #→ B have VLSI communication complexity CCvlsi(f). Then,
the following bounds hold for the computation of f by a semellective VLSI chip with area A in T
steps.

(CCvlsi(f))2 = O(AT 2), O(A2T)

Note that in a planar circuit all the information passed from each side of the separator
to the other is sent simultaneously, whereas in the communication game players alternate in
sending values drawn from the set X . Because more freedom is granted to players in the com-
munication game (each player can choose data to send based on responses previously received
from the other player), a lower bound on communication complexity is a lower bound on the
amount of information that must be exchange in a planar circuit.

A number of techniques have been developed to derive lower bounds on the planar circuit
size of predicates. One of these uses the pigeonhole principle (also known as a crossing-
sequence argument) to derive lower bounds for predicates that are w(u, v)-separated. This
new property is similar to the w(u, v)-flow property of multi-output functions. It is defined
below.

DEFINITION 12.7.3 A function f : Xn #→ B is w(u, v)-separated if its variables can be per-
muted and partitioned into three sets U , V , and Z, |U | ≥ u and |V | ≥ v, such that there is some
value z for variables in Z and values ui and vi, 1 ≤ i ≤ |X|w(u,v), for variables in U and V ,
respectively, such that the following holds:

f(ui, vj , z) =

{
1 if i = j

0 otherwise

This definition can be applied to predicates that are associated with multi-output functions.
These functions are defined below.

DEFINITION 12.7.4 The characteristic predicate pf : X(n+m) #→ B of f : X(n) #→ X(m) is
defined below.

pf (x, y) =

{
1 if y = f(x)

0 otherwise

It is straightforward to show that the characteristic predicate of a function that has a
w(u, v)-flow is w(u, v)-separated. (See Problem 12.18.) As a consequence, quadratic lower

c©John E Savage 12.8 Area Bounds 597

bounds exist on the semellective planar circuit size of the characteristic predicates of the con-
volution, cyclic shift, integer multiplication, discrete Fourier transform, matrix multiplication
functions, and many others.

12.8 Area Bounds
We now derive lower bounds on the area used by semellective VLSI chip algorithms for a
variety of functions. For the functions considered here, these bounds are linear in their number
of variables. As explained in the Chapter Notes, not all functions are amenable to the type of
analysis presented in this section.

The technique used to derive area lower bounds is similar to that used in Section 10.4.2
to derive lower bounds on the exchange of space for time in the pebble game. If a chip has
many I/O ports, it has large area. On the other hand, if it has a small number of ports, the
inputs to the function computed are received over many cycles. If the function has a large
w(u, v)-flow, by direct analogy with the pebble game, the area must be large to insure that
enough information be stored between cycles.

THEOREM 12.8.1 Let β ≥ 1. If f : Xn #→ Xm has a w(u, v)-flow, every chip computing f
requires area A = Ω(min((m/2β), w(u, v))), where u = n(1 − 1/β) and v = (m/4β).

Proof If the chip has π I/O pads or can store S values over the alphabet X , it has area
A ≥ λ2 min(π, S). Fix β ≥ 1. Its value is chosen later to provide a strong lower bound. If
π ≥ m/2β, we are done. Thus, we show that S ≥ w(u, v) when π < m/2β.

Let the VLSI algorithm have T time steps and let hi ≤ π outputs be generated on the
ith time step, 1 ≤ i ≤ T . Create q intervals of consecutive time steps as follows: The first
interval contains the first k1 time steps, where k1 is such that the total number of outputs
produced during the first k1 steps is as large as possible without exceeding m/β. Successive
intervals are created in the same way, namely by grouping consecutive later time steps to
satisfy the same requirement on the number of outputs produced. For all intervals except
possibly the last, the number of outputs produced is at least (m/β) − π + 1 > (m/2β).
If the last interval contains fewer than (m/2β) outputs, redistribute the elements in the last
two intervals, of which there are at least (m/β)− π + 2 ≥ (m/2β) + 2, so that each has at
least (m/4β) + 1 outputs. It follows that the number of intervals, q, satisfies β ≤ q ≤ 4β.

We now examine the inputs read during intervals. Since there are n inputs to be read
and each is read once, the average number read per interval is n/q which is at most n/β. It
follows that there is some interval I in which at least (m/4β) + 1 outputs are pebbled and
at most n/β inputs are read.

Fix the inputs that are read during I . The remaining inputs, of which there are at least
u = n(1 − 1/β), are free to vary. The number of outputs produced during I is at least
v = (m/4β). Since f has a w(u, v)-flow, if S < w(u, v), the v outputs, whose values are
determined by the values stored on the chip at the beginning of I , cannot assume all their
values. It follows that S ≥ w(u, v), which is the desired conclusion.

We now apply this bound to (α, n, m, p)-independent functions. Later we apply it to the
matrix multiplication function.

THEOREM 12.8.2 Let f : Xn #→ Xm be (α, n, m, p)-independent. It requires area A =
λ2((mp/(n + m/4)α) − 1) when realized by a semellective VLSI algorithm.

598 Chapter 12 VLSI Models of Computation Models of Computation

Proof We apply Theorem 12.8.1 with u = n(1 − 1/β) and v = (m/4β). Because f is
(α, n, m, p) independent, w(u, v) > v/α− 1 for n− u + v ≤ p. Since n− u = n/β and
v = (m/4β), this implies that β ≥ (n + m/4)/p. The lower bound of Theorem 12.8.1
then is the smaller of (m/2β) and (m/4αβ) − 1. Since we are free to choose β, we choose
it to make the smaller of the two as large as possible. In particular, we set β = (n+m/4)/p,
which provides the desired result.

Because all of the (α, n, m, p)-independent functions listed in Theorem 12.7.2 have n,
m, and p proportional to one another, each requires area A = Ω(n), as stated below. It
follows that the lower bound AT 2 = Ω(n2) for these problems cannot be achieved to within
a constant multiplicative factor if T grows more rapidly with n than

√
n.

COROLLARY 12.8.1 The functions f (n)
wrapped : R2n #→ Rn, f (n)

cyclic : Bn+$log n% #→ Bn,

f (n)
mult : B2n #→ B2n, and Fn : Rn #→ Rn each require area A = Ω(n) when realized by a

semellective VLSI algorithm.

A similar result applies to matrix multiplication.

THEOREM 12.8.3 The area A required to compute the matrix multiplication function f (n)
A×B :

R2n2 #→ Rn2

with a semellective VLSI algorithm satisfies A = Ω(n2)

Proof We apply Theorem 12.8.1 with n and m replaced by 2n2 and n2, respectively. Since
u = 2n2(1 − 1/β) and v = (n2/4β), the lower bound on w(u, v)-flow for matrix multi-
plication function satisfies the following

w(u, v) = (v − (2n2 − u)2/4n2)/2 ≥ n2

2

(
1

4β
− 1

β2

)

The lower bound is a positive multiple of n2 if β > 4 and largest for β = 8, from which
the desired conclusion follows.

. .
Problems
VLSI COMPUTATIONAL MODELS

12.1 Assume the I/O ports are on the periphery of a convex chip. In the speed-of-light model
show that if p such ports all have paths to some point on the chip, then the time for
data supplied to each port to reach that point is Θ(p).

12.2 Under the assumptions of Problem 12.1, derive a lower bound on the time to compute
a function f on n inputs under the additional assumption that there is a path on the
chip from the port at which each variable arrives to the port at which f is produced.

Hint: Show that the time required is at least the sum of the number of cycles needed
to read all n inputs and the time for data to travel across the chip. State these times in
terms of p and choose p to maximize the smaller of these two lower bounds.

c©John E Savage Problems 599

CHIP LAYOUT

12.3 Show that every layout of a balanced binary tree on n leaves in which the root and the
leaves are placed on the boundary of a convex region has area proportional to n log n.

Hint: Consider an inscribed quadrilateral defined by the longest chord and a chord
perpendicular to it.

12.4 The n × n mesh-of-trees network, n = 2r, is described in Problem 7.4. Give an area-
efficient layout for an arbitrary graph in this family of graphs and derive an expression
for its area.

12.5 Let n = 2k. As suggested in Fig. 12.9, the n × n tree of meshes Tn is a binary tree
in which each vertex is a mesh and the meshes are decreasing in size with distance from
the root. The edges between vertices are bundles of parallel wires. The root vertex is
an n × n mesh, its immediate descendants are n/2 × n meshes, and their immediate
descendants are n/2 × n/2 descendants, and so on.

The depth-d, n × n mesh of trees, Tn,d, is Tn that has been truncated to vertices at
distance d or less from the root.

Determine the area of an area-efficient layout of the tree Tn,d.

COMPUTATIONAL INEQUALITIES

12.6 Use the results of Problem 12.11 to extend Theorem 12.7.1 to multilective planar
circuits of order µ.

12.7 Further extend the results of Problem 12.6 to (β, µ)-multilective VLSI algorithms by
showing that, at the expense of a small increase in AT 2 and A2T , multiple inputs of a
variable at the same I/O port can be treated as a single input, thereby possibly reducing
the multilective order of the corresponding planar circuit. This implies that if multiple
copies of each variable are read at a single port, then the semellective planar circuit size
is a lower bound to both AT 2 and A2T .

Figure 12.9 The 4 × 4 tree of meshes, T4.

600 Chapter 12 VLSI Models of Computation Models of Computation

THE PLANAR SEPARATOR THEOREM

12.8 The pizza pie graph G = (V , E) has n = |V |− 1 vertices that are uniformly spaced
points on a circle as well as a vertex at the center of the circle. E consists of the arcs
between vertices on the circle and edges between the central vertex and vertices on the
circle.

When n = 12, triangulate G by adding edges between vertices on its external face.
Illustrate Lemma 12.6.2 by choosing a cost function c and constructing two sets whose
cost at most 2 c(V)/3 and a separator containing at most three vertices.

12.9 In a spanning tree for a graph G = (V , E) the level of a vertex is the length of the path
from the root to it. Given a non-negative cost function on the vertices of G totaling
c(V), show there is some level m such that the cost of vertices at levels less than and
more than m each is at most c(V)/2.

12.10 (Two-Cost Planar Separator Theorem) Let G = (V , E) be an N -vertex planar graph
having non-negative vertex costs summing to c(V). Show that V can be partitioned
into three sets, A, B, and C, such that no edge joins vertices in A with those in B,
neither A nor B has cost exceeding 7c(V)/9, |A| and |B| contain at most 5N/6
vertices, and C contains no more than K1

√
N vertices, where K1 = 4(

√
2/3 + 1).

Hint: Apply the planar separator theorem twice. The first time use it to partition V
into two sets of about the same size and a separator. If each of the two sets has cost
at most 2c(V)/3, the result holds. If not, make a second application of the planar
separator theorem to the set with larger cost. Show that it is possible to combine sets to
simultaneously meet both the size and cost requirements.

12.11 Let G = (V , E) be an N -vertex planar graph and let c be a non-negative cost function
on V with total cost c(V). Let P ≥ 2. Show there are constants 2P/3 ≤ q ≤ 3P and
K2 = 4(

√
2/3 + 1)/(1 −

√
5/6) such that V can be partitioned into q sets, A1, A2,

. . . , Aq such that for 1 ≤ i ≤ q

c(V)/(3P) ≤ c(Ai) ≤ 3c(V)/(2P)

and there are sets Ci, |Ci| ≤ K2

√
N , and Bi = V − Ai −Ci such that no edges join

vertices in Ai with vertices in Bi.

Hint: When P = 2, use the result of Problem 12.10 and combine the vertices of the
separator with the other two sets to satisfy the necessary conditions. When P > 2,
subdivide any set with cost exceeding c(V)/P into two sets and a separator using the
two-cost planar separator theorem. Assign vertices of the separator to these two sets to
keep the cost in balance.

THE PERFORMANCE OF VLSI ALGORITHMS

12.12 Show that the function defined by the product of three square matrices has a semel-
lective planar circuit size that is quadratic in its number of variables and that it can be
realized by a VLSI chip with AT 2 that meets the semellective planar circuit size lower
bound.

12.13 Show that the wrapped convolution function f (n)
wrapped : R2n #→ Rn, can be realized

as an embedded CCC network on a VLSI circuit with area A and time T satisfying
AT 2 = Θ(n2) for Ω(log n) ≤ T ≤

√
n.

c©John E Savage Chapter Notes 601

12.14 Design a VLSI chip for n×n matrix multiplication that achieves AT 2 = n4 log2 n for
T = O(log n).

Hint: Represent each matrix as a 2 × 2 matrix of (n/2) × (n/2) matrices and use the
standard algorithm that performs eight multiplications of (n/2) × (n/2) matrices. A
multiplier has one side longer than the other. Place the long side of the (n/2)× (n/2)
matrix multiplier at right angles to the long side of the n × n matrix multiplier. Apply
this rule to the recursive construction of the multiplier.

12.15 Show that an algorithm of the kind described in Problem 12.14 can be combined with
a mesh-based matrix multiplication algorithm of the kind described in Section 7.5.3 to
produce a family of algorithms that achieve the lower bound on n×n matrix multipli-
cation for Ω(log n) ≤ T ≤ n.

12.16 Devise a VLSI chip for n-bit integer multiplication function chip that uses area A and
time T efficiently.

Hint: Let x and y denote binary numbers. Recursively form the product of these
integers as the sum of two products, that of x with the high-order (n/2) bits of y and
that of x with the low-order (n/2) bits of y. Use carry-save addition where possible.

12.17 Give a proof of Theorem 12.7.4.

12.18 Show that the characteristic predicate of a function that has a w(u, v)-flow is w(u, v)-
separated.

AREA BOUNDS

12.19 Show that any VLSI algorithm that realizes a superconcentrator on n inputs requires
area Θ(n).

Chapter Notes
Mead and Conway wrote an influential book [212] that greatly simplified the design rules for
VLSI chips and made VLSI design accessible to a large audience. Ullman [338] summarized
the status of the field around 1984 and Lengauer [192] addressed the VLSI layout problem.
Lengauer has also written a survey paper [193] that provides an overview of the theory of VLSI
algorithms as of about 1990. The three transmission models described in Section 12.2 reflect
the analysis of Zhou, Preparata, and Khang [371].

Thompson [325] obtained the first important tradeoff results for the VLSI model of com-
putation. He demonstrated that under a suitable model a lower bound of AT 2 = Ω(n2)
could be derived for the discrete Fourier transform, a result he subsequently extended to sort-
ing [326]. Generalizations of this model were made to convex chips [59], compact plane
regions [194], and other closely related models [201]. Vuillemin [354] extended the models
to include pipelining. Chazelle and Monier [67] introduced the transmission-line model de-
scribed in Problems 12.1 and 12.2. For a discussion of other models that take into account the
effects of distributed resistance, capacitance and inductance, see [40] and [371].

Systolic algorithms, which make good use of area and time, were popularized by Kung
[176] and others (see, for example, [103,121,178,179,180,189]). The H-tree featured in Sec-
tion 12.5.1 is due to Mead and Rem [213]. Prefix computations are discussed in Chapter 2.
The cube-connected cycles network (its layout is given in Section 12.5.3) and the efficient

602 Chapter 12 VLSI Models of Computation Models of Computation

realization of normal algorithms are due to Preparata and Vuillemin [261], as explained in
Chapter 7. Lengauer [192] provides an in-depth treatment of algorithms for VLSI chip lay-
out.

Most authors prefer to derive lower bounds on AT 2 by partitioning the planar region oc-
cupied by chips [59,194,325]. In effect, they employ a physical version of the planar separator
theorem. The characterization of VLSI lower bounds in terms of planar circuit complexity in-
troduced by Savage [287] reinforces the connection between memoryless and memory-based
computation explored in Chapter 3 but for planar computations by VLSI chips. It also pro-
vides an opportunity to introduce the elegant planar separator theorem of Lipton and Tarjan
[202]. Lipton and Tarjan [203] developed quadratic lower bounds on the planar circuit size of
shifting and matrix multiplication before the connection was established between VLSI com-
plexity and planar circuit size. Improving upon results of [287], McColl [208] and McColl and
Paterson [209] show that almost all Boolean functions on n variables require a planar circuit
size of Ω(2n) and that this lower bound can be achieved for all functions to within a constant
multiplicative factor close to 1. Turán [335] has shown that the upper bound of Lemma 12.6.1
is tight by exhibiting a family of functions of linear standard circuit size whose planar circuit
size is quadratic.

Abelson [1] and Yao [365] studied communication complexity with fixed partitions. Yao
[366] and Lipton and Sedgewick [201] made explicit the implicit connection between VLSI
communication complexity and the derivation of the AT 2 lower bounds. (See also [235],
[12], and [193] for a discussion of the conditions under which lower bounds can be derived
on the VLSI communication complexity measure.)

Many authors have contributed to the derivation of semellective lower bounds for partic-
ular functions. Among these are Thompson [325,326,327,328], who obtained bounds of the
form AT 2 = Ω(n2) for the DFT and sorting, as did Abelson and Andreae [3] and Brent
and Kung [59] for integer multiplication, JáJá and Kumar [148] for a variety of problems, Bi-
lardi and Preparata [41] for sorting, Savage for matrix multiplication, inversion, and transitive
closure [288] and binary integer powers and reciprocals [287], and Vuillemin for transitive
functions [354] (see Problem 10.22). These authors generally show that the lower bounds for
functions can be met either to within a small multiplicative constant factor.

Good VLSI designs have been given by Baudet, Preparata, and Vuillemin [31] for con-
volution, Guibas and Liang [122] for systolic stacks, queues, and counters, and Kung and
Song [182] and Kung, Ruane, and Yen [181] on 2D convolution. Also, Luk and Vuillemin
[206] give an optimal VLSI integer multiplier and Mehlhorn has provided optimal algorithms
for integer division and square rooting [216] whose range of optimality has been extended
by Mehlhorn and Preparata [218]. Preparata [257] has given a mesh-based optimal VLSI
multiplier for large integers and Preparata and Vuillemin have given optimal algorithms for
multiplying square [259] and triangular matrices [260]. C. Savage [283] has given a systolic
algorithm for graph connectivity.

Lower bounds for the semellective computation of predicates by VLSI algorithms have
been derived by Yao [366] for graph isomorphism, by Lipton and Sedgewick [201] for the
recognition of context-free languages, pattern matching, and binary integer factorization test-
ing, and by Savage [287] for the characteristic predicates of multi-output functions.

Hochschild [133], Kedem and Zorat [162,163], Savage [289,290], and Turán [336] have
developed lower bounds on performance of multilective VLSI algorithms. Savage has explored
multilective planar circuit size [290], giving a multi-output function with a Ω(n4/3) lower

c©John E Savage Chapter Notes 603

bound. Turán [336] exhibits a function and a predicate with Ω(n3/2 log n) and Ω(n log n)
lower bounds to their multilective planar circuit size, respectively. The w(u, v)-flow and
w(u, v)-separated properties used in Section 12.7 were introduced in [290].

Lower bounds on the area of chips have been explored by a number of authors. Yao [366]
examined addition; Baudet [30] studied functions that do not have a large information flow;
Heintz [130] derived bounds for matrix-matrix multiplication; Leighton [190] introduced and
used the crossing number of a graph to derive area bounds; Siegel [308] derived bounds for
sorting; and Savage [287] examined functions with many subfunctions. Bilardi and Preparata
[42] have generalized arguments of [30] and [151] to derive stronger area–time lower bounds
for functions, such as prefix, for which the information flow arguments give weak results.
Lower bounds on the area of multilective chips were obtained by Savage [290], Hromkovič
[141,142], and Ďuriš and Galil [92].

Models for 3D VLSI chips, which are not yet a reality, have been introduced by Rosenberg
[281,282] and studied by Preparata [262].

