
C H A P T E R

Memory-Hierarchy Tradeoffs

Although serial programming languages assume that programs are written for the RAM model,
this model is rarely implemented in practice. Instead, the random-access memory is replaced
with a hierarchy of memory units of increasing size, decreasing cost per bit, and increasing
access time. In this chapter we study the conditions on the size and speed of these units when
a CPU and a memory hierarchy simulate the RAM model. The design of memory hierarchies
is a topic in operating systems.

A memory hierarchy typically contains the local registers of the CPU at the lowest level and
may contain at succeeding levels a small, very fast, local random-access memory called a cache,
a slower but still fast random-access memory, and a large but slow disk. The time to move data
between levels in a memory hierarchy is typically a few CPU cycles at the cache level, tens of
cycles at the level of a random-access memory, and hundreds of thousands of cycles at the disk
level! A CPU that accesses a random-access memory on every CPU cycle may run at about
a tenth of its maximum speed, and the situation can be dramatically worse if the CPU must
access the disk frequently. Thus it is highly desirable to understand for a given problem how
the number of data movements between levels in a hierarchy depends on the storage capacity
of each memory unit in that hierarchy.

In this chapter we study tradeoffs between the number of storage locations (space) at each
memory-hierarchy level and the number of data movements (I/O time) between levels. Two
closely related models of memory hierarchies are used, the memory-hierarchy pebble game and
the hierarchical memory model, which are extensions of those introduced in Chapter 10.

In most of this chapter it is assumed not only that the user has control over the I/O algo-
rithm used for a problem but that the operating system does not interfere with the I/O oper-
ations requested by the user. However, we also examine I/O performance when the operating
system, not the user, controls the sequence of memory accesses (Section 11.10). Competi-
tive analysis is used in this case to evaluate two-level LRU and FIFO memory-management
algorithms.

529

530 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

11.1 The Red-Blue Pebble Game
The red-blue pebble game models data movement between adjacent levels of a two-level mem-
ory hierarchy. We begin with this model to fix ideas and then introduce the more general
memory-hierarchy game. Both games are played on a directed acyclic graph, the graph of a
straight-line program. We describe the game and then give its rules.

In the red-blue game, (hot) red pebbles identify values held in a fast primary memory
whereas (cold) blue pebbles identify values held in a secondary memory. The values identified
with the pebbles can be words or blocks of words, such as the pages used by an operating
system. Since the red-blue pebble game is used to study the number of I/O operations necessary
for a problem, the number of red pebbles is assumed limited and the number of blue pebbles is
assumed unlimited. Before the game starts, blue pebbles reside on all input vertices. The goal
is to place a blue pebble on each output vertex, that is, to compute the values associated with
these vertices and place them in long-term storage. These assumptions capture the idea that
data resides initially in the most remote memory unit and the results must be deposited there.

RED-BLUE PEBBLE GAME

• (Initialization) A blue pebble can be placed on an input vertex at any time.

• (Computation Step) A red pebble can be placed on (or moved to) a vertex if all its imme-
diate predecessors carry red pebbles.

• (Pebble Deletion) A pebble can be deleted from any vertex at any time.

• (Goal) A blue pebble must reside on each output vertex at the end of the game.

• (Input from Blue Level) A red pebble can be placed on any vertex carrying a blue pebble.

• (Output to Blue Level) A blue pebble can be placed on any vertex carrying a red pebble.

The first rule (initialization) models the retrieval of input data from the secondary mem-
ory. The second rule (a computation step) is equivalent to requiring that all the arguments
on which a function depends reside in primary memory before the function can be computed.
This rule also allows a pebble to move (or slide) to a vertex from one of its predecessors, mod-
eling the use of a register as both the source and target of an operation. The third rule allows
pebble deletion: if a red pebble is removed from a vertex that later needs a red pebble, it must
be repebbled.

The fourth rule (the goal) models the placement of output data in the secondary memory
at the end of a computation. The fifth rule allows data held in the secondary memory to be
moved back to the primary memory (an input operation). The sixth rule allows a result to
be copied to a secondary memory of unlimited capacity (an output operation). Note that a
result may be in both memories at the same time.

The red-blue pebble game is a direct generalization of the pebble game of Section 10.1
(which we call the red pebble game), as can be seen by restricting the sixth rule to allow
the placement of blue pebbles only on vertices that are output vertices of the DAG. Under
this restriction the blue level cannot be used for intermediate results and the goal of the game
becomes to minimize the number of times vertices are pebbled with red pebbles, since the
optimal strategy pebbles each output vertex once.

c©John E Savage 11.1 The Red-Blue Pebble Game 531

A pebbling strategy P is the execution of the rules of the pebble game on the vertices of
a graph. We assign a step to each placement of a pebble, ignoring steps on which pebbles are
removed, and number the steps consecutively. The space used by a strategy P is defined as
the maximum number of red pebbles it uses. The I/O time, T2, of P on the graph G is the
number of input and output (I/O) steps used by P . The computation time, T1, is the number
of computation steps of P on G. Note that time in the red pebble game is the time to place red
pebbles on input and internal vertices; in this chapter the former are called I/O operations.

Since accesses to secondary memory are assumed to require much more time than accesses
to primary memory, a minimal pebbling strategy, Pmin, performs the minimal number of
I/O operations on a graph G for a given number of red pebbles and uses the smallest number
of red pebbles for a given I/O time. Furthermore, such a strategy also uses the smallest number

of computation steps among those meeting the other requirements. We denote by T (2)
1 (S, G)

and T (2)
2 (S, G) the number of computation and I/O steps in a minimal pebbling of G in the

red-blue pebble game with S red pebbles.
The minimum number of red pebbles needed to play the red-blue pebble game is the

maximum number of predecessors of any vertex. This follows because blue pebbles can be used
to hold all intermediate results. Thus, in the FFT graph of Fig. 11.1 only two red pebbles are
needed, since one of them can be slid to the vertex being pebbled. However, if the minimum
number of pebbles is used, many expensive I/O operations are necessary.

In Section 11.2 we generalize the red-blue pebble game to multiple levels and consider two
variants of the model, one in which all levels including the highest can be used for intermediate
storage, and a second in which the highest level cannot be used for intermediate storage. The
second model (the I/O-limited game) captures aspects of the red-blue pebble game as well as
the red pebble game of Chapter 10.

An important distinction between the pebble game results obtained in this chapter and
those in Chapter 10 is that here lower bounds are generally derived for particular graphs,
whereas in Chapter 10 they are obtained for all graphs of a problem.

Figure 11.1 An eight-input FFT graph showing three two-input FFT subgraphs.

532 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

11.1.1 Playing the Red-Blue Pebble Game
The rules for the red-blue pebble game are illustrated by the eight-input FFT graph shown in
Fig. 11.1. If S = 3 red pebbles are available to pebble this graph (at least S = 4 pebbles are
needed in the one-pebble game), a pebbling strategy that keeps the number of I/O operations
small is based on the pebbling of sub-FFT graphs on two inputs. Three such sub-FFT sub-
graphs are shown by heavy lines in Fig. 11.1, one at each level of the FFT graph. This pebbling
strategy uses three red pebbles to place blue pebbles on the outputs of each of the four lowest-
level sub-FFT graphs on two inputs, those whose outputs are second-level vertices of the full
FFT graph. (Thus, eight blue pebbles are used.) Shown on a second-level sub-FFT graph are
three red pebbles at the time when a pebble has just been placed on the first of the two outputs
of this sub-FFT graph. This strategy performs two I/O operations for each vertex except for
input and output vertices. A small savings is possible if, after pebbling the last sub-FFT graph
at one level, we immediately pebble the last sub-FFT graph at the next level.

11.1.2 Balanced Computer Systems
A balanced computer system is one in which no computational unit or data channel becomes
saturated before any other. The results in this chapter can be used to analyze balance. To
illustrate this point, we examine a serial computer system consisting of a CPU with a random-
access memory and a disk storage unit. Such a system is balanced for a particular problem if
the time used for I/O is comparable to the time used for computation.

As shown in Section 11.5.2, multiplying two n× n matrices with a variant of the classical
matrix multiplication algorithm requires a number of computations proportional to n3 and a
number of I/O operations proportional to n3/

√
S, where S is the number of red pebbles or

the capacity of the random-access memory. Let t0 and t1 be the times for one computation
and I/O operation, respectively. Then the system is balanced when t0n3 ≈ t1n3/

√
S. Let the

computational and I/O capacities, Ccomp and CI/O, be the rates at which the CPU and disk
can compute and exchange data, respectively; that is, Ccomp = 1/t0 and CI/O = 1/t1. Thus,
balance is achieved when the following condition holds:

Ccomp

CI/O
≈

√
S

From this condition we see that if through technological advance the ratio Ccomp/CI/O in-
creases by a factor β, then for the system to be balanced the storage capacity of the system, S,
must increase by a factor β2.

Hennessy and Patterson [131, p. 427] observe that CPU speed is increasing between 50%
and 100% per year while that of disks is increasing at a steady 7% per year. Thus, if the ratio
Ccomp/CI/O for our simple computer system grows by a factor of 50/7 ≈ 7 per year, then
S must grow by about a factor of 49 per year to maintain balance. To the extent that matrix
multiplication is typical of the type of computing to be done and that computers have two-
level memories, a crisis is looming in the computer industry! Fortunately, multi-level memory
hierarchies are being introduced to help avoid this crisis.

As bad as the situation is for matrix multiplication, it is much worse for the Fourier trans-
form and sorting. For each of these problems the number of computation and I/O operations
is proportional to n log2 n and n log2 n/ log2 S, respectively (see Section 11.5.3). Thus, bal-

c©John E Savage 11.2 The Memory-Hierarchy Pebble Game 533

ance is achieved when

Ccomp

CI/O
≈ log2 S

Consequently, if Ccomp/CI/O increases by a factor β, S must increase to Sβ . Under the
conditions given above, namely, β ≈ 7, a balanced two-level memory-hierarchy system for
these problems must have a storage capacity that grows from S to about S7 every year.

11.2 The Memory-Hierarchy Pebble Game
The standard memory-hierarchy game (MHG) defined below generalizes the two-level red-
blue game to multiple levels. The L-level MHG is played on directed acyclic graphs with pl

pebbles at level l, 1 ≤ l ≤ L − 1, and an unlimited number of pebbles at level L. When
L = 2, the lower level is the red level and the higher is the blue level. The number of pebbles
used at the L − 1 lowest levels is recorded in the resource vector p = (p1, p2, . . . , pL−1),
where pj ≥ 1 for 1 ≤ j ≤ L − 1. The rules of the game are given below.

STANDARD MEMORY-HIERARCHY GAME

R1. (Initialization) A level-L pebble can be placed on an input vertex at any time.

R2. (Computation Step) A first-level pebble can be placed on (or moved to) a vertex if all its
immediate predecessors carry first-level pebbles.

R3. (Pebble Deletion) A pebble of any level can be deleted from any vertex.

R4. (Goal) A level-L pebble must reside on each output vertex at the end of the game.

R5. (Input from Level l) For 2 ≤ l ≤ L, a level-(l − 1) pebble can be placed on any vertex
carrying a level-l pebble.

R6. (Output to Level l) For 2 ≤ l ≤ L, a level-l pebble can be placed on any vertex carrying a
level-(l − 1) pebble.

The first four rules are exactly as in the red-blue pebble game. The fifth and sixth rules general-
ize the fifth and sixth rules of the red-blue pebble game by identifying inputs from and outputs
to level-l memory. These last two rules allow a level-l memory to serve as temporary storage
for lower-level memories.

In the standard MHG, the highest-level memory can be used for storing intermediate
results. An important variant of the MHG is the I/O-limited memory-hierarchy game, in
which the highest level memory cannot be used for intermediate storage. The rules of this
game are the same as in the MHG except that rule R6 is replaced by the following two rules:

I/O-LIMITED MEMORY-HIERARCHY GAME

R6. (Output to Level l) For 2 ≤ l ≤ L − 1, a level-l pebble can be placed on any vertex
carrying a level-(l − 1) pebble.

R7. (I/O Limitation) Level-L pebbles can only be placed on output vertices carrying level-
(L − 1) pebbles.

534 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

The sixth and seventh rules of the new game allow the placement of level-L pebbles only on
output vertices. The two-level version of the I/O-limited MHG is the one-pebble game studied
in Chapter 10. As mentioned earlier, we call the two-level I/O-limited MHG the red pebble
game to distinguish it from the red-blue pebble game and the MHG. Clearly the multi-level
I/O-limited MHG is a generalization of both the standard MHG and the one-pebble game.

The I/O-limited MHG models the case in which accesses to the highest level memory take
so long that it should be used only for archival storage, not intermediate storage. Today disks
are so much slower than the other memories in a hierarchy that the I/O-limited MHG is the
appropriate model when disks are used at the highest level.

The resource vector p = (p1, p2, . . . , pL−1) associated with a pebbling strategy P speci-
fies the number of l-level pebbles, pl, used by P . We say that pl is the space used at level l by
P . We assume that pl ≥ 1 for 1 ≤ l ≤ L, so that swapping between levels is possible. The

I/O time at level l with pebbling strategy P and resource vector p, T (L)
l (p, G,P), 2 ≤ l ≤ L,

with both versions of the MHG is the number of inputs from and outputs to level l. The com-

putation time with pebbling strategy P and resource vector p, T (L)
1 (p, G,P), in the MHG

is the number of times first-level pebbles are placed on vertices by P . Since there is little risk of

confusion, we use the same notation, T (L)
l (p, G,P), in the standard and I/O-limited MHG

for the number of computation and I/O steps.
The definition of a minimal MHG pebbling is similar to that for a red-blue pebbling.

Given a resource vector p, Pmin is a minimal pebbling for an L-level MHG if it minimizes
the I/O time at level L, after which it minimizes the I/O time at level L − 1, continuing in
this fashion down to level 2. Among these strategies it must also minimize the computation
time. This definition of minimality is used because we assume that the time needed to move
data between levels of a memory hierarchy grows rapidly enough with increasing level that it is
less costly to repebble vertices at or below a given level than to perform an I/O operation at a
higher level.

Figure 11.2 Pebbling an eight-input FFT graph in the three-level MHG.

c©John E Savage 11.3 I/O-Time Relationships 535

11.2.1 Playing the MHG
Figure 11.2 shows the FFT graph on eight inputs being pebbled in a three-level MHG with
resource vector p = (2, 4). Here black circles denote first-level pebbles, shaded circles denote
second-level pebbles and striped circles denote third-level pebbles. Four striped, three shaded
and two black pebbles reside on vertices in the second row of the FFT. One of these shaded
second-level pebbles shares a vertex with a black first-level pebble, so that this black pebble can
be moved to the vertex covered by the open circle without deleting all pebbles on the doubly
covered vertex.

To pebble the vertex under the open square with a black pebble, we reuse the black pebble
on the open circle by swapping it with a fourth shaded pebble, after which we place the black
pebble on the vertex that was doubly covered and then slide it to the vertex covered by the
open box. This graph can be completely pebbled with the resource vector p = (2, 4) using
only four third-level pebbles, as the reader is asked to show. (See Problem 11.3.) Thus, it can
also be pebbled in the four-level I/O-limited MHG using resource vector p = (2, 4, 4).

11.3 I/O-Time Relationships
The following simple relationships follow from two observations. First, each input and output
vertex must receive a pebble at each level, since every input must be read from level L and
every output must be written to level L. Second, at least one computation step is needed for
each non-input vertex of the graph. Here we assume that every vertex in V must be pebbled
to pebble the output vertices.

LEMMA 11.3.1 Let α be the maximum in-degree of any vertex in G = (V , E) and let In(G)
and Out(G) be the sets of input and output vertices of G, respectively. Then any pebbling P of G
with the MHG, whether standard or I/O-limited, satisfies the following conditions for 2 ≤ l ≤ L:

T (L)
l (p, G,P) ≥ |In(G)| + |Out(G)|

T (L)
1 (p, G,P) ≥ |V |−| In(G)|

The following theorem relates the number of moves in an L-level game to the number in
a two-level game and allows us to use prior results. The lower bound on the level-l I/O time
is stated in terms of sl−1 because pebbles at levels 1, 2, . . . , l − 1 are treated collectively as red
pebbles to derive a lower bound; pebbles at level l and above are treated as blue pebbles.

THEOREM 11.3.1 Let sl =
∑l−1

j=1 pj . Then the following inequalities hold for every L-level

standard MHG pebbling strategy P for G, where p is the resource vector used by P and T (2)
1 (S, G)

and T (2)
2 (S, G) are the number of computation and I/O operations used by a minimal pebbling in

the red-blue pebble game played on G with S red pebbles:

T (L)
l (p, G,P) ≥ T (2)

2 (sl−1, G) for 2 ≤ l ≤ L

Also, the following lower bound on computation time holds for all pebbling strategies P in the
standard MHG:

T (L)
1 (p, G,P) ≥ T (2)

1 (s1, G),

536 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

In the I/O-limited case the following lower bounds apply, where α is the maximum fan-in of any
vertex of G:

T (L)
l (p, G,P) ≥ T (2)

2 (sl−1, G) for 2 ≤ l ≤ L

T (L)
1 (p, G,P) ≥ T (2)

2 (sL−1, G)/α

Proof The first set of inequalities is shown by considering the red-blue game played with
S = sl−1 red pebbles and an unlimited number of blue pebbles. The S red pebbles and
sL−1 − S blue pebbles can be classified into L − 1 groups with pj pebbles in the jth
group, so that we can simulate the steps of an L-level MHG pebbling strategy P . Because
there are constraints on the use of pebbles in P , this strategy uses a number of level-l I/O
operations that cannot be larger than the minimum number of such I/O operations when
pebbles at level l − 1 or less are treated as red pebbles and those at higher levels are treated

as blue pebbles. Thus, T (L)
l (p, G,P) ≥ T (2)

2 (sl−1, G). By similar reasoning it follows that

T (L)
1 (p, G,P) ≥ T (2)

1 (s1, G).
In the above simulation, blue pebbles simulating levels l and above cannot be used arbi-

trarily when the I/O-limitation is imposed. To derive lower bounds under this limitation, we
classify S = sL−1 pebbles into L− 1 groups with pj pebbles in the jth group and simulate
in the red-blue pebble game the steps of an L-level I/O-limited MHG pebbling strategy P .
The I/O time at level l is no more than the I/O time in the two-level I/O-limited red-blue
pebble game in which all S red pebbles are used at level l − 1 or less.

Since the number of blue pebbles is unlimited, in a minimal pebbling all I/O operations
consist of placing of red pebbles on blue-pebbled vertices. It follows that if T I/O operations
are performed on the input vertices, then at least T placements of red pebbles on blue-
pebbled vertices occur. Since at least one internal vertex must be pebbled with a red pebble
in a minimal pebbling for every α input vertices that are red-pebbled, the computation time

is at least T/α. Specializing this to T = T (2)
2 (sL−1, G) for the I/O-limited MHG, we have

the last result.

It is important to note that the lower bound to T (2)
1 (S, G,P) for the I/O-limited case is

not stated in terms of |V |, because |V | may not be the same for each values of S. Consider the
multiplication of two n × n matrices. Every graph of the standard algorithm can be pebbled
with three red pebbles, but such graphs have about 2n3 vertices, a number that cannot be
reduced by more than a constant factor when a constant number of red pebbles is used. (See
Section 11.5.2.) On the other hand, using the graph of Strassen’s algorithm for this problem
requires at least Ω(n.38529) pebbles, since it has O(n2.807) vertices.

We close this section by giving conditions under which lower bounds for one graph can
be used for another. Let a reduction of DAG G1 = (V1, E1) be a DAG G0 = (V0, E0),
V0 ⊆ V1 and E0 ⊆ E1, obtained by deleting edges from E1 and coalescing the non-terminal
vertices on a “chain” of vertices in V1 into the first vertex on the chain. A chain is a sequence
v1, v2, . . . , vr of vertices such that, for 2 ≤ i ≤ r − 1, vi is adjacent to vi−1 and vi+1 and no
other vertices.

LEMMA 11.3.2 Let G0 be a reduction of G1. Then for any minimal pebbling Pmin and 1 ≤
l ≤ L, the following inequalities hold:

T (L)
l (p, G1,Pmin) ≥ T (L)

l (p, G0,Pmin)

c©John E Savage 11.4 The Hong-Kung Lower-Bound Method 537

Proof Any minimal pebbling strategy for G1 can be used to pebble G0 by simulating moves
on a chain with pebble placements on the vertex to which vertices on the chain are coalesced
and by honoring the edge restrictions of G1 that are removed to create G0. Since this strategy
for G1 may not be minimal for G0, the inequalities follow.

11.4 The Hong-Kung Lower-Bound Method
In this section we derive lower limits on the I/O time at each level of a memory hierarchy
needed to pebble a directed acyclic graph with the MHG. These results are obtained by com-
bining the inequalities of Theorem 11.3.1 with a lower bound on the I/O and computation
time for the red-blue pebble game.

Theorem 10.4.1 provides a framework that can be used to derive lower bounds on the I/O
time in the red-blue pebble game. This follows because the lower bounds of Theorem 10.4.1
are stated in terms of TI , the number of times inputs are pebbled with S red pebbles, which
is also the number of I/O operations on input vertices in the red-blue pebble game. It is
important to note that the lower bounds derived using this framework apply to every straight-
line program for a problem.

In some cases, for example matrix multiplication, these lower bounds are strong. However,
in other cases, notably the discrete Fourier transform, they are weak. For this reason we intro-
duce a way to derive lower bounds that applies to a particular graph of a problem. If that graph
is used for the problem, stronger lower bounds can be derived with this method than with the
techniques of Chapter 10. We begin by introducing the S-span of a DAG.

DEFINITION 11.4.1 Given a DAG G = (V , E), the S-span of G, ρ(S, G), is the maximum
number of vertices of G that can be pebbled with S pebbles in the red pebble game maximized over
all initial placements of S red pebbles. (The initialization rule is disallowed.)

The following is a slightly weaker but simpler version of the Hong-Kung [136] lower
bound on I/O time for the two-level MHG. This proof divides computation time into con-
secutive intervals, just as was done for the space–time lower bounds in the proofs of Theo-
rems 10.4.1 and 10.11.1.

THEOREM 11.4.1 For every pebbling P of the DAG G = (V , E) in the red-blue pebble game

with S red pebbles, the I/O time used, T (2)
2 (S, G,P), satisfies the following lower bound:

)T (2)
2 (S, G)/S*ρ(2S, G) ≥ |V |−| In(G)|

Proof Divide P into consecutive sequential sub-pebblings {P1,P2, . . . ,Ph}, where each
sub-pebbling has S I/O operations except possibly the last, which has no more such opera-

tions. Thus, h =)T (2)
2 (S, G,P)/S*.

We now develop an upper bound Q to the number of vertices of G pebbled with red
pebbles in any sub-pebbling Pj . This number multiplied by the number h of sub-pebblings
is an upper bound to the number of vertices other than inputs, |V |−| In(G)|, that must be
pebbled to pebble G. It follows that

Qh ≥ |V |−| In(G)|

The upper bound on Q is developed by adding S new red pebbles and showing that
we may use these new pebbles to move all I/O operations in a sub-pebbling Pt to either

538 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

the beginning or the end of the sub-pebbling without changing the number of computation
steps or I/O operations. Thus, without changing them, we move all computation steps to a
middle interval of Pt, between the higher-level I/O operations.

We now show how this may be done. Consider a vertex v carrying a red pebble at some
time during Pt that is pebbled for the first time with a blue pebble during Pt (vertex 7 at
step 11 in Fig. 11.3). Instead of pebbling v with a blue pebble, use a new red pebble to
keep a red pebble on v. (This is equivalent to swapping the new and old red pebbles on v.)
This frees up the original red pebble to be used later in the sub-pebbling. Because we attach
a red pebble to v for the entire pebbling Pt, all later output operations from v in Pt can
be deleted except for the last such operation, if any, which can be moved to the end of the
interval. Note that if after v is given a blue pebble in P , it is later given a red pebble, this red
pebbling step and all subsequent blue pebbling steps except the last, if any, can be deleted.
These changes do not affect any computation step in Pt.

Consider a vertex v carrying a blue pebble at the start of Pt that later in Pt is given a
red pebble (see vertex 4 at step 12 in Fig. 11.3). Consider the first pebbling of this kind.
The red pebble assigned to v may have been in use prior to its placement on v. If a new
red pebble is used for v, the first pebbling of v with a red pebble can be moved toward
the beginning of Pt so that, without violating the precedence conditions of G, it precedes
all placements of red pebbles on vertices without pebbles. Attach this new red pebble to v
during Pt. Subsequent placements of red pebbles on v when it carries a blue pebble during
Pt, if any, are thereby eliminated.

121110

4321

8

9

5 6 7

Pt

Step 1 2 3 4 5 6 7 8 9 10 11 12 13
Pebble R1 R2 R2 B R2 R2 R1 B R2 R2 B R2 R2
Vertex ↓ 1 ↓ 2 5 ↑ 5 ↓ 2 6 ↓ 3 ↑ 6 ↓ 4 7 ↑ 7 ↓ 4 8

Step 14 15 16 17 18 19 20 21 22 23
Pebble R1 R2 R2 R2 R2 R1 R2 R2 R2 R2
Vertex ↓ 5 ↓ 7 9 ↓ 7 11 ↓ 6 ↓ 8 10 ↓ 8 12

Figure 11.3 The vertices of an FFT graph are numbered and a pebbling schedule is given in
which the two numbered red pebbles are used. Up (down) arrows identify steps in which an
output (input) occurs; other steps are computation steps. Steps 10 through 13 of the schedule Pt

contain two I/O operations. With two new red pebbles, the input at step 12 can be moved to the
beginning of the interval and the output at step 11 can be moved after step 13.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 539

We now derive an upper bound to Q. At the start of the pebbling of the middle interval
of Pt there are at most 2S red pebbles on G, at most S original red pebbles plus S new red
pebbles. Clearly, the number of vertices that can be pebbled in the middle interval with first-
level pebbles is largest when all 2S red pebbles on G are allowed to move freely. It follows
that at most ρ(2S, G) vertices can be pebbled with red pebbles in any interval. Since all
vertices must be pebbled with red pebbles, this completes the proof.

Combining Theorems 11.3.1 and 11.4.1 and a weak lower limit on the size of T (L)
l (p, G),

we have the following explicit lower bounds to T (L)
l (p, G).

COROLLARY 11.4.1 In the standard MHG when T (L)
l (p, G) ≥ β(sl−1 − 1) for β > 1, the

following inequality holds for 2 ≤ l ≤ L:

T (L)
l (p, G) ≥ β

β + 1

sl−1

ρ(2sl−1, G)
(|V |−| In(G)|)

In the I/O-limited MHG when T (L)
l (p, G) ≥ β(sl−1 − 1) for β > 1, the following inequality

holds for 2 ≤ l ≤ L:

T (L)
l (p, G) ≥ β

β + 1

sL−1

ρ(2sL−1, G)
(|V |−| In(G)|)

11.5 Tradeoffs Between Space and I/O Time
We now apply the Hong-Kung method to a variety of important problems including matrix-
vector multiplication, matrix-matrix multiplication, the fast Fourier transform, convolution,
and merging and permutation networks.

11.5.1 Matrix-Vector Product
We examine here the matrix-vector product function f (n)

Ax : Rn2+n -→ Rn over a commutative
ring R described in Section 6.2.1 primarily to illustrate the development of efficient multi-
level pebbling strategies. The lower bounds on I/O and computation time for this problem
are trivial to obtain. For the matrix-vector product, we assume that the graphs used are those
associated with inner products. The inner product u · v of n-vectors u and v over a ring R
is defined by:

u · v =
n∑

i=1

ui · vi

The graph of a straight-line program to compute this inner product is given in Fig. 11.4, where
the additions of products are formed from left to right.

The matrix-vector product is defined here as the pebbling of a collection of inner product
graphs. As suggested in Fig. 11.4, each inner product graph can be pebbled with three red
pebbles.

THEOREM 11.5.1 Let G be the graph of a straight-line program for the product of the matrix A
with the vector x. Let G be pebbled in the standard MHG with the resource vector p. There is a

540 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

xnx2a1,2 a1,nx3a1,1 a1,3x1

12 13

19
15

11
7

1 2 4 5 8 9

1814

16 17

3 6 10

Figure 11.4 The graph of an inner product computation showing the order in which vertices
are pebbled. Input vertices are labeled with the entries in the matrix A and vector x that are
combined. Open vertices are product vertices; those above them are addition vertices.

pebbling strategy P of G with pl ≥ 1 for 2 ≤ l ≤ L−1 and p1 ≥ 3 such that T (L)
1 (p, G,P) =

2n2 − n, the minimum value, and the following bounds hold simultaneously:

n2 + 2n ≤ T (L)
l (p, G,P) ≤ 2n2 + n

Proof The lower bound T (L)
l (p, G,P) ≥ n2+2n, 1 ≤ l ≤ L, follows from Lemma 11.3.1

because there are n2 + n inputs and n outputs to the matrix-vector product. The upper
bounds derived below represent the number of operations performed by a pebbling strategy
that uses three level-1 pebbles and one pebble at each of the other levels.

Each of the n results of the matrix-vector product is computed as an inner product in
which successive products ai,jxj are formed and added to a running sum, as suggested by
Fig. 11.4. Each of the n2 entries of the matrix A (leaves of inner product trees) is used in
one inner product and is pebbled once at levels L, L−1, . . . , 1 when needed. The n entries
in x are used in every inner product and are pebbled once at each level for each of the n
inner products. First-level pebbles are placed on each vertex of each inner product tree in the
order suggested in Fig. 11.4. After the root vertex of each tree is pebbled with a first-level
pebble, it is pebbled at levels 2, . . . , L.

It follows that one I/O operation is performed at each level on each vertex associated
with an entry in A and the outputs and that n I/O operations are performed at each level
on each vertex associated with an entry in x, for a total of 2n2 + n I/O operations at each
level. This pebbling strategy places a first-level pebble once on each interior vertex of each
of the n inner product trees. Such trees have 2n − 1 internal vertices. Thus, this strategy
takes 2n2 − n computation steps.

As the above results demonstrate, the matrix-vector product is an example of an I/O-
bounded problem, a problem for which the amount of I/O required at each level in the
memory hierarchy is comparable to the number of computation steps. Returning to the dis-
cussion in Section 11.1.2, we see that as CPU speed increases with technological advances, a
balanced computer system can be constructed for this problem only if the I/O speed increases
proportionally to CPU speed.

The I/O-limited version of the MHG for the matrix-vector product is the same as the
standard version because only first-level pebbles are used on vertices that are neither input or
output vertices.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 541

11.5.2 Matrix-Matrix Multiplication
In this section we derive upper and lower bounds on exchanges between I/O time and space
for the n×n matrix multiplication problem in the standard and I/O-limited MHG. We show
that the lower bounds on computation and I/O time can be matched by efficient pebbling
strategies.

Lower bounds for the standard MHG are derived for the family Fn of inner product
graphs for n×n matrix multiplication, namely, the set of graphs to multiply two n×n ma-
trices using just inner products to compute entries in the product matrix. (See Section 6.2.2.)
We allow the additions in these inner products to be performed in any order.

The lower bounds on I/O time derived below for the I/O-limited MHG apply to all DAGs
for matrix multiplication. Since these DAGs include graphs other than the inner product trees
in Fn, one might expect the lower bounds for the I/O-limited case to be smaller than those
derived for graphs in Fn. However, this is not the case, apparently because efficient pebbling
strategies for matrix multiplication perform I/O operations only on input and output vertices,
not on internal vertices. The situation is very different for the discrete Fourier transform, as
seen in the next section.

We derive results first for the red-blue pebble game, that is, the two-level MHG, and then
generalize them to the multi-level MHG. We begin by deriving an upper bound on the S-span
for the family of inner product matrix multiplication graphs.

LEMMA 11.5.1 For every graph G ∈ Fn the S-span ρ(S, G) satisfies the bound ρ(S, G) ≤
2S3/2 for S ≤ n2.

Proof ρ(S, G) is the maximum number of vertices of G ∈ Fn that can be pebbled with
S red pebbles from an initial placement of these pebbles, maximized over all such initial
placements. Let A, B, and C be n × n matrices with entries {ai,j}, {bi,j}, and {ci,j},
respectively, where 1 ≤ i, j ≤ n. Let C = A × B. The term ci,j =

∑
k ai,kbk,j is

associated with the root vertex in of a unique inner product tree. Vertices in this tree are
either addition vertices, product vertices associated with terms of the form ai,kbk,j , or input
vertices associated with entries in the matrices A and B. Each product term ai,kbk,j is
associated with a unique term ci,j and tree, as is each addition operator.

Consider an initial placement of S ≤ n2 pebbles of which r are in addition trees (they
are on addition or product vertices). Let the remaining S − r pebbles reside on input
vertices. Let p be the number of product vertices that can be pebbled from these pebbled
inputs. We show that at most p + r − 1 additional pebble placements are possible from the
initial placement, giving a total of at most π = 2p + r − 1 pebble placements. (Figure 11.5

a1,1 b1,2 a1,2 b2,2

(b)(a)

a2,1 b1,1 a2,2 b2,1 a2,1 b1,2 a2,2 b2,2

(c) (d)

a1,1 b1,1 a1,2 b2,1

Figure 11.5 Graph of the inner products used to form the product of two 2 × 2 matrices.
(Common input vertices are repeated for clarity.)

542 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

shows a graph G for a 2 × 2 matrix multiplication algorithm in which the product vertices
are those just below the output vertices. The black vertices carry pebbles. In this example
r = 2 and p = 1. While p + r − 1 = 2, only one pebble placement is possible on addition
trees in this example.)

Given the dependencies of graphs in Fn, there is no loss in generality in assuming that
product vertices are pebbled before pebbles are advanced in addition trees. It follows that at
most p+r addition-tree vertices carry pebbles before pebbles are advanced in addition trees.
These pebbled vertices define subtrees of vertices that can be pebbled from the p + r initial
pebble placements. Since a binary tree with n leaves has n − 1 non-leaf nodes, it follows
that if there are t such trees, at most p+ r− t pebble placements will be made, not counting
the original placement of pebbles. This number is maximized at t = 1. (See Problem 11.9.)

We now complete the proof by deriving an upper bound on p. Let A be the 0−1 n×n
matrix whose (i, j) entry is 1 if the variable in the (i, j) position of the matrix A carries a
pebble initially and 0 otherwise. Let B be similarly defined for B. It follows that the (i, j)
entry, δi,j , of the matrix product C = A × B, where addition and multiplication are over
the integers, is equal to the number of products that can be formed that contribute to the
(i, j) entry of the result matrix C. Thus p =

∑
i,j δi,j . We now show that p ≤

√
S(S−r).

Let A and B have a and b 1’s, respectively, where a+ b = S− r. There are at most a/α
rows of A containing at least α 1’s. The maximum number of products that can be formed
from such rows is ab/α because each 1 in B combine with a 1 in each of these rows. Now
consider the product of other rows of A with columns of B. At most S such row-column
inner products are formed since at most S outputs can be pebbled. Since each of them
involves a row with at most α 1’s, at most αS products of pairs of variables can be formed.
Thus, a total of at most p = ab/α + αS products can be formed. We are free to choose
α to minimize this sum (α =

√
ab/S does this) but must choose a and b to maximize it

(a = (S−r)/2 satisfies this requirement). The result is that p ≤
√

S(S−r). We complete
the proof by observing that π = 2p + r − 1 ≤ 2

√
SS for r ≥ 0.

Theorem 11.5.2 states bounds that apply to the computation and I/O time in the red-blue
pebble game for matrix multiplication.

THEOREM 11.5.2 For every graph G in the family Fn of inner product graphs for multiplying
two n × n matrices and for every pebbling strategy P for G in the red-blue pebble game that
uses S ≥ 3 red pebbles, the computation and I/O-time satisfy the following lower bounds:

T (2)
1 (S, G,P) = Ω(n3)

T (2)
2 (S, G,P) = Ω

(
n3

√
S

)

Furthermore, there is a pebbling strategy P for G with S ≥ 3 red pebbles such that the following
upper bounds hold simultaneously:

T (2)
1 (S, G,P) = O(n3)

T (2)
2 (S, G,P) = O

(
n3

√
S

)

The lower bound on I/O time stated above applies for every graph of a straight-line program for
matrix multiplication in the I/O-limited red-blue pebble game. The upper bound on I/O time

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 543

also applies for this game. The computation time in the I/O-limited red-blue pebble game satisfies
the following bound:

T (2)
1 (S, G,P) = Ω

(
n3

√
S

)

Proof For the standard MHG, the lower bound to T (2)
1 (S, G,P) follows from the fact that

every graph in Fn has Θ(n3) vertices and Lemma 11.3.1. The lower bound to T (2)
2 (S, G)

follows from Corollary 11.4.1 and Lemma 11.5.1 and the lower bound to T (2)
1 (S, G,P)

for the I/O-limited MHG follows from Theorem 11.3.1.
We now describe a pebbling strategy that has the I/O time stated above and uses the

obvious algorithm suggested by Fig. 11.6. If S red pebbles are available, let r = 0
√

S/31 be
an integer that divides n. (If r does not divide n, embed A, B and C in larger matrices for
which r does divide n. This requires at most doubling n.) Let the n×n matrices A, B and
C be partitioned into n/r × n/r matrices; that is, A = [ai,j], B = [bi,j], and C = [ci,j],
whose entries are r×r matrices. We form the r×r submatrix ci,j of C as the inner product
of a row of r × r submatrices of A with a column of such submatrices of B:

ci,j =
r∑

q=1

ai,q × bq,j

We begin by placing blue pebbles on each entry in matrices A and B. Compute ci,j by
computing ai,q × bq,j for q = 1, 2, . . . , r and adding successive products to the running
sum. Keep r2 red pebbles on the running sum. Compute ai,q × bq,j by placing and holding
r2 red pebbles on the entries in ai,q and r red pebbles on one column of bq,j at a time. Use
two additional red pebbles to compute the r2 inner products associated with entries of ci,j

in the fashion suggested by Fig. 11.4 if r ≥ 2 and one additional pebble if r = 1. The
maximum number of red pebbles in use is 3 if r = 1 and at most 2r2 + r + 2 if r ≥ 2.
Since 2r2 + r + 2 ≤ 3r2 for r ≥ 2, in both cases at most 3r2 red pebbles are needed. Thus,
there are enough red pebbles to play this game because r = 0

√
S/31 implies that 3r2 ≤ S,

the number of red pebbles. Since r ≥ 1, this requires that S ≥ 3.

×

= BC A

n

nn

Figure 11.6 A pebbling schema for matrix multiplication based on the representation of a
matrix in terms of block submatrices. A submatrix of C is computed as the inner product of a
row of blocks of A with a column of blocks of B.

544 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

This algorithm performs one input operation on each entry of ai,q and bq,j to compute
ci,j . It also performs one output operation per entry to compute ci,j itself. Summing over
all values of i and j, we find that n2 output operations are performed on entries in C. Since
there are (n/r)2 submatrices ai,q and bq,j and each is used to compute n/r terms cu,v, the
number of input operations on entries in A and B is 2(n/r)2r2(n/r) = 2n3/r. Because
r = 0

√
S/31, we have r ≥

√
S/3 − 1, from which the upper bound on the number of

I/O operations follows. Since each product and addition vertex in each inner product graph
is pebbled once, O(n3) computation steps are performed.

The bound on T (2)
2 (S, G,P) for the I/O-limited game follows from two observations.

First, the computational inequality of Theorem 10.4.1 provides a lower bound to TI , the
number of times that input vertices are pebbled in the red-pebble game when only red
pebbles are used on vertices. This is the I/O-limited model. Second, the lower bound of
Theorem 10.5.4 on T (actually, TI) is of the form desired.

These results and the strategy given for the two-level case carry over to the multi-level case,
although considerable care is needed to insure that the pebbling strategy does not fragment
memory and lead to inefficient upper bounds.

Even though the pebbling strategy given below is an I/O-limited strategy, it provides
bounds on time in terms of space that match the lower bounds for the standard MHG.

THEOREM 11.5.3 For every graph G in the family Fn of inner product graphs for multiplying
two n × n matrices and for every pebbling strategy P for G in the standard MHG with resource
vector p that uses p1 ≥ 3 first-level pebbles, the computation and I/O time satisfy the following

lower bounds, where sl =
∑l

j=1 pj and k is the largest integer such that sk ≤ 3n2:

T (L)
1 (p, G,P) = Ω

(
n3

)

T (L)
l (p, G,P) =

{
Ω

(
n3/

√
sl−1

)
for 2 ≤ l ≤ k

Ω
(
n2

)
for k + 1 ≤ l ≤ L

Furthermore, there is a pebbling strategy P for G with p1 ≥ 3 such that the following upper bounds
hold simultaneously:

T (L)
1 (p, G,P) = O(n3)

T (L)
l (p, G,P) =

{
O

(
n3/

√
sl−1

)
for 2 ≤ l ≤ k

O
(
n2

)
for k + 1 ≤ l ≤ L

In the I/O-limited MHG the upper bounds given above apply. The following lower bound on the
I/O time applies to every graph G for n×n matrix multiplication and every pebbling strategy P ,
where S = sL−1:

T (L)
l (p, G,P) = Ω

(
n3/

√
S

)
for 1 ≤ l ≤ L

Proof The lower bounds on T (L)
l (p, G,P), 2 ≤ l ≤ L, follow from Theorems 11.3.1 and

11.5.2. The lower bound on T (L)
1 (p, G,P) follows from the fact that every graph in Fn

has Θ(n3) vertices to be pebbled.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 545

r1 = 0
√

s1/31

r2 = r10
√

s2 − 1/(
√

3r1)1

r3 = r20
√

s3 − 1/(
√

3r2)1

Figure 11.7 A three-level decomposition of a matrix.

We now describe a multi-level recursive pebbling strategy satisfying the upper bounds
given above. It is based on the two-level strategy given in the proof of Theorem 11.5.2. We
compute C from A and B using inner products.

Our approach is to successively block A, B, and C into ri × ri submatrices for i =
k, k − 1, . . . , 1 where the ri are chosen, as suggested in Fig. 11.7, so they divide on another
and avoid memory fragmentation. Also, they are also chosen relative to si so that enough
pebbles are available to pebble ri × ri submatrices, as explained below.

ri =

⌊√
s1/3

⌋
i = 1

ri−1

⌊√
(si − i + 1)/(

√
3ri−1)

⌋
i ≥ 2

Using the fact that b/2 ≤ a0b/a1 ≤ b for integers a and b satisfying 1 ≤ a ≤ b (see
Problem 11.1), we see that

√
(si − i + 1)/12 ≤ ri ≤

√
(si − i + 1)/3. Thus, si ≥

3r2
i + i − 1. Also, r2

k ≤ n2 because sk ≤ 3n2.
By definition, sl pebbles are available at level l and below. As stated earlier, there is at

least one pebble at each level above the first. From the sl pebbles at level l and below we
create a reserve set containing one pebble at each level except the first. This reserve set is
used to perform I/O operations as needed.

Without loss of generality, assume that rk divides n. (If not, n must be at most doubled
for this to be true. Embed A, B, and C in such larger matrices.) A, B, and C are then
blocked into rk×rk submatrices (call them ai,j , bi,j , and ci,j), and these in turn are blocked
into rk−1×rk−1 submatrices, continuing until 1×1 submatrices are reached. The submatrix
ci,j is defined as

546 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

ci,j =
rk∑

q=1

ai,q × bq,j

As in Theorem 11.5.2, ci,j is computed as a running sum, as suggested in Fig. 11.4,
where each vertex is associated with an rk × rk submatrix. It follows that 3r2

k pebbles at
level k or less (not including the reserve pebbles) suffice to hold pebbles on submatrices ai,q,
bq,j and the running sum. To compute a product ai,q × bq,j , we represent ai,q and bq,j as
block matrices with blocks that are rk−1 × rk−1 matrices. Again, we form this product as
suggested in Fig. 11.4, using 3r2

k−1 pebbles at levels k− 1 or lower. This process is repeated
until we encounter a product of r1 × r1 matrices, which is then pebbled according to the
procedure given in the proof of Theorem 11.5.2.

Let’s now determine the number of I/O and computation steps at each level. Since all
non-input vertices of G are pebbled once, the number of computation steps is O(n3). I/O
operations are done only on input and output vertices. Once an output vertex has been
pebbled at the first level, reserve pebbles can be used to place a level-L pebble on it. Thus
one output is done on each of the n2 output vertices at each level.

We now count the I/O operations on input vertices starting with level k. n×n matrices
A, B, and C contain rk×rk matrices, where rk divides n. Each of the (n/rk)2 submatrices
ai,q and bq,j is used in (n/rk) inner products and at most r2

k I/O operations at level k are
performed on them. (If most of the sk pebbles at level k or less are at lower levels, fewer
level-k I/O operations will be performed.) Thus, at most 2(n/rk)2(n/rk)r2

k = 2n2/rk

I/O operations are performed at level k. In turn, each of the rk × rk matrices contains
(rk/rk−1)2 rk−1 × rk−1 matrices; each of these is involved in (rk/rk−1) inner products
each of which requires at most r2

k−1 I/O operations. Since there are at most (n/rk−1)2

rk−1 × rk−1 submatrices in each of A, B, and C, at most 2n3/rk−1 I/O operations are
performed at level k − 1. Continuing in this fashion, at most 2n3/rl I/O operations are
performed at level l for 2 ≤ l ≤ k. Since rl ≥

√
(si − i + 1)/12, we have the desired

conclusion.
Since the above pebbling strategy does not place pebbles at level 2 or above on any vertex

except input and output vertices, it applies in the I/O-limited case. The lower bound follows
from Lemma 11.3.1 and Theorem 11.5.2.

11.5.3 The Fast Fourier Transform
The fast Fourier transform (FFT) algorithm is described in Section 6.7.3 (an FFT graph is
given in Fig. 11.1). A lower bound is obtained by the Hong-Kung method for the FFT by
deriving an upper bound on the S-span of the FFT graph. In this section all logarithms have
base 2.

LEMMA 11.5.2 The S-span of the FFT graph F (d) on n = 2d inputs satisfies ρ(S, G) ≤
2S log S when S ≤ n.

Proof ρ(S, G) is the maximum number of vertices of G that can be pebbled with S red
pebbles from an initial placement of these pebbles, maximized over all such initial place-
ments. G contains many two-input FFT (butterfly) graphs, as shown in Fig. 11.8. If v1

and v2 are the output vertices in such a two-input FFT and if one of them is pebbled, we

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 547

v1

u2

v2

p1

u1

p2

Figure 11.8 A two-input butterfly graph with pebbles p1 and p2 resident on inputs.

obtain an upper bound on the number of pebbled vertices if we assume that both of them
are pebbled. In this proof we let {pi | 1 ≤ i ≤ S} denote the S pebbles available to pebble
G. We assign an integer cost num(pi) (initialized to zero) to the ith pebble pi in order to
derive an upper bound to the total number of pebble placements made on G.

Consider a matching pair of output vertices v1 and v2 of a two-input butterfly graph
and their common predecessors u1 and u2, as suggested in Fig. 11.8. Suppose that on the
next step we can place a pebble on v1. Then pebbles (call them p1 and p2) must reside on
u1 and u2. Advance p1 and p2 to both v1 and v2. (Although the rules stipulate that an
additional pebble is needed to advance the two pebbles, violating this restriction by allowing
their movement to v1 and v2 can only increase the number of possible moves, a useful effect
since we are deriving an upper bound on the number of pebble placements.)

After advancing p1 and p2, if num(p1) = num(p2), augment both by 1; otherwise,
augment the smaller by 1. Since the predecessors of two vertices in an FFT graph are in
disjoint trees, there is no loss in assuming that all S pebbles remain on the graph in a
pebbling that maximizes the number of pebbled vertices. Because two pebble placements
are possible each time num(pi) increases by 1 for some i, ρ(S, G) ≤ 2

∑
1≤i≤S num(pi).

We now show that the number of vertices that contained pebbles initially and are con-
nected via paths to the vertex covered by pi is at least 2num(pi). That is, 2num(pi) ≤ S
or num(pi) ≤ log2 S, from which the upper bound on ρ(S, G) follows. Our proof is by
induction. For the base case of num(pi) = 1, two pebbles must reside on the two immedi-
ate predecessors of a vertex containing the pebble pi. Assume that the hypothesis holds for
num(pi) ≤ e − 1. We show that it holds for num(pi) = e. Consider the first point in
time that num(pi) = e. At this time pi and a second pebble pj reside on a matching pair
of vertices, v1 and v2. Before these pebbles are advanced to these two vertices from u1 and
u2, the immediate predecessors of v1 and v2, the smaller of num(pi) and num(pj) has a
value of e − 1. This must be pi because its value has increased. Thus, each of u1 and u2

has at least 2e−1 predecessors that contained pebbles initially. Because the predecessors of u1

and u2 are disjoint, each of v1 and v2 has at least 2e = 2num(pi) predecessors that carried
pebbles initially.

This upper bound on the S-span is combined with Theorem 11.4.1 to derive a lower
bound on the I/O time at level l to pebble the FFT graph. We derive upper bounds that match
to within a multiplicative constant when the FFT graph is pebbled in the standard MHG. We
develop bounds for the red-blue pebble game and then generalize them to the MHG.

548 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

THEOREM 11.5.4 Let the FFT graph on n = 2d inputs, F (d), be pebbled in the red-blue
pebble game with S red pebbles. When S ≥ 3 there is a pebbling of F (d) such that the following

bounds hold simultaneously, where T (2)
1 (p1, F (d)) and T (2)

2 (p1, F (d)) are the computation and
I/O time in a minimal pebbling of F (d):

T (2)
1 (S, F (d)) = Θ(n log n)

T (2)
2 (S, F (d)) = Θ

(
n log n

log S

)

Proof The lower bound on T (2)
1 (S, F (d)) is obvious; every vertex in F (d) must be peb-

bled a first time. The lower bound on T (2)
2 (S, F (d)) follows from Corollary 11.4.1, Theo-

rem 11.3.1, Lemma 11.5.2, and the obvious lower bound on |V |. We now exhibit a pebbling
strategy giving upper bounds that match the lower bounds up to a multiplicative factor.

As shown in Corollary 6.7.1, F (d) can be decomposed into)d/e* stages, 0d/e1 stages
containing 2d−e copies of F (e) and one stage containing 2d−k copies of F (k), k = d −
0d/e1e. (See Fig. 11.9.) The output vertices of one stage are the input vertices to the next.
For example, F (12) can be decomposed into three stages with 212−4 = 256 copies of F (4)

on each stage and one stage with 212 copies of F (0), a single vertex. (See Fig. 11.10.) We use
this decomposition and the observation that F (e) can be pebbled level by level with 2e + 1
level-1 pebbles without repebbling any vertex to develop our pebbling strategy for F (d).

Given S red pebbles, our pebbling strategy is based on this decomposition with e =
d0 = 0log2(S − 1). Since S ≥ 3, d0 ≥ 1. Of the S red pebbles, we actually use only
S0 = 2d0 + 1. Since S0 ≤ S, the number of I/O operations with S0 red pebbles is no

F (d−e)
b,1 F (d−e)

b,2 ... F (d−e)
b,β

F (e)
t,1 F (e)

t,2 F (e)
t,3 F (e)

t,4 F (e)
t,5 F (e)

t,6 F (e)
t,τ...

Figure 11.9 Decomposition of the FFT graph F (d) into β = 2e bottom FFT graphs F (d−e)

and τ = 2d−e top F (e). Edges between bottom and top sub-FFT graphs identify common
vertices between the two.

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 549

...

...

...

F (4)

256

Figure 11.10 The decomposition of an FFT graph F (12) into three stages each containing 256

copies of F (4). The gray areas identify rows of F (12) in which inputs to one copy of F (4) are
outputs of copies of F (4) at the preceding level.

less than with S red pebbles. Let d1 = 0d/d01. Then, F (d) is decomposed into d1 stages
each containing 2d−d0 copies of F (d0) and one stage containing 2d−t copies of F (t) where
t = d − d0d1. Since t ≤ d0, each vertex in F (t) can be pebbled with S0 pebbles without
re-pebbling vertices. The same applies to F (d0).

The pebbling strategy for the red-blue pebble game is based on this decomposition.
Pebbles are advanced to outputs of each of the bottom FFT subgraphs F (t) using 2t+1 ≤ S0

red pebbles, after which the red pebbles are replaced with blue pebbles. The subgraphs F (d0)

in each of the succeeding stages are then pebbled in the same fashion; that is, their blue-
pebbled inputs are replaced with red pebbles and red pebbles are advanced to their outputs
after which they are replaced with blue pebbles.

This strategy pebbles each vertex once with red pebbles with the exception of vertices

common to two FFT subgraphs which are pebbled twice. It follows that T (L)
1 (S, F (d)) ≤

2d+1(d + 1) = 2n(log2 n + 1). This strategy also executes one I/O operation for each
of the 2d inputs and outputs to F (d) and two I/O operations for each of the 2d vertices
common to adjacent stages. Since there are)d/d0* stages, there are)d/d0* − 1 such pairs

of stages. Thus, the number of I/O operations satisfies T (L)
2 (S, F (d)) ≤ 2d+1)d/d0* ≤

2n(log2 n/(log2 S/4) + 1) = O(n log n/ log S).

The bounds for the multi-level case generalize those for the red-blue pebble game. As with
matrix multiplication, care must be taken to avoid memory fragmentation.

THEOREM 11.5.5 Let the FFT graph on n = 2d inputs, F (d), be pebbled in the standard MHG

with resource vector p. Let sl =
∑l

j=1 pj and let k be the largest integer such that sk ≤ n. When

p1 ≥ 3, the following lower bounds hold for all pebblings of F (d) and there exists a pebbling P for

550 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

which the upper bounds are simultaneously satisfied:

T (L)
l (p, F (d),P) =

Θ(n log n) l = 1

Θ
(

n log n
log sl−1

)
2 ≤ l ≤ k

Θ(n) k + 1 ≤ l ≤ L

Proof Proofs of the first two lower bounds follow from Lemma 11.3.1 and Theorem 11.5.4.
The third follows from the fact that pebbles at every level must be placed on each input and
output vertex but no intermediate vertex. We now exhibit a pebbling strategy giving upper
bounds that match (up to a multiplicative factor) these lower bounds for all 1 ≤ l ≤ L.
(See Fig. 11.9.)

We define a non-decreasing sequence d = (d0, d1, d2, . . . , dL−1) of integers used be-
low to describe an efficient multi-level pebbling strategy for F (d). Let d0 = 1 and d1 =
0log(s1 − 1)1 ≥ 1, where s1 = p1 ≥ 3. Define mr and dr for 2 ≤ r ≤ L − 1 by

mr =

⌊
0log min(sr − 1, n)1

dr−1

⌋

dr = mrdr−1

It follows that sr ≥ 2dr + 1 when sr ≤ n + 1 since a0b/a1 ≤ b. Because 0log a1 ≥
(log a)/2 when a ≥ 1 and also a0b/a1 ≥ b/2 for integers a and b when 1 ≤ a ≤ b (see
Problem 11.1), it follows that dr ≥ log(min(sr − 1, n))/4. The values dl are chosen to
avoid memory fragmentation.

Before describing our pebbling strategy, note that because we assume at least one pebble
is available at each level in the hierarchy, it is possible to perform an I/O operation at each
level. Also, pebbles at levels less than l can be used as though they were at level l.

Our pebbling strategy is based on the decomposition of F (d) into FFT subgraphs F (dk),
each of which is decomposed into FFT subgraphs F (dk−1), and so on, until reaching FFT
subgraphs F (1) that are two-input, two-output butterfly graphs. To pebble F (d) we apply
the strategy described in the proof of Theorem 11.5.4 as follows. We decompose F (2)

into d2/d1 stages, each containing 2d2−d1 copies of F (1), which we pebble with s1 = p1

first-level pebbles using this strategy. By the analysis in the proof of Theorem 11.5.4, 2d2+1

level-2 I/O operations are performed on inputs and outputs to F (d2) as well as another 2d2+1

level-2 I/O operations on the vertices between two stages. Since there are d2/d1 stages, a
total of (d2/d1)2d2+1 level-2 I/O operations are performed. We then decompose F (3) into
d3/d2 stages each containing 2d3−d2 copies of F (2). We pebble F (3) with s2 pebbles at level
1 or 2 by pebbling copies of F (2) in stages, using (d3/d2)2d3+1 level-3 I/O operations and

using (d3/d2)2d3−d2 times as many level-2 I/O operations as used by F (2). Let n(3)
2 be the

number of level-2 I/O operations used to pebble F (3). Then n(3)
2 = (d3/d1)2d3+1.

Continuing in this fashion, we pebble F (r), 1 ≤ r ≤ k, with sr−1 pebbles at levels l or
below by pebbling copies of F (r−1) in stages, using (dr/dr−1)2dr+1 level-r I/O operations

and using (dr/dr−1)2dr−dr−1 as many level-j I/O operations for 1 ≤ j ≤ r − 1. Let n(r)
j

be the number of level-j I/O operations used to pebble F (r). By induction it follows that

n(r)
j = (dr/dj)2dr+1.

For r ≥ k, the number of pebbles available at level r or less is at least 2d + 1, which is
enough to pebble F (d) by levels without performing I/O operations above level k + 1; this

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 551

means that I/O operations at these levels are performed only on inputs, giving the bound

T (L)
l (p, F (d),P) = O(n), n = 2d, for k + 1 ≤ r ≤ L. When r ≤ k, we pebble F (d) by

decomposing it into)d/dk* stages such that each stage, except possibly the first, contains
2d−dk copies of the FFT subgraph F (dk). The first stage has 2d−d∗

copies of F (d∗) of depth
d∗ = d−()d/dk*−1)dk, which we treat as subgraphs of the subgraph F (dk) and pebble to
completion with a number of operations at each level that is at most the number to pebble
F (dk). Each instance of F (dk) is pebbled with sk−1 pebbles at level k − 1 or lower and
a pebble at level k or higher is left on its output. Since sk+1 ≥ n + 1, there are enough
pebbles to do this.

Thus T (L)
l (p, F (d),P) satisfies the following bound for 1 ≤ l ≤ L:

T (L)
l (p, F (d),P) ≤)d/dk*2d−dkT (L)

l (p, F (dk),P)

Combining this with the earlier result, we have the following upper bound on the number
of I/O operations for 1 ≤ l ≤ k:

T (L)
l (p, F (d),P) ≤)d/dk*(dk/dl)2

d+1

Since, as noted earlier, dr ≥ log(min(sr − 1, n))/4, we obtain the desired upper bound on

T (L)
l (p, F (d),P) by combining this result with the bound on n(k)

l given above.

The above results are derived for standard MHG and the family of FFT graphs. We now
strengthen these results in two ways when the I/O-limited MHG is used. First, the I/O limita-
tion requires more time for a given amount of storage and, second, the lower bound we derive
applies to every graph for the discrete Fourier transform, not just those for the FFT.

It is important to note that the efficient pebbling strategy used in the standard MHG
makes extensive use of level-L pebbles on intermediate vertices of the FFT graph. When this is
not allowed, the lower bound on the I/O time is much larger. Since the lower bounds for the
standard and I/O-limited MHG on matrix multiplication are about the same, this illustrates
that the DFT and matrix multiplication make dramatically different use secondary memory.
(In the following theorem a linear straight-line program is a straight-line program in which
the operations are additions and multiplications by constants.)

THEOREM 11.5.6 Let FFT (n) be any DAG associated with the DFT on n inputs when real-
ized by a linear straight-line program. Let FFT (n) be pebbled with strategy P in the I/O-limited

MHG with resource vector p and let sl =
∑l

j=1 pj . If S = sL−1 ≤ n, then for each pebbling
strategy P , the computation and I/O time at level l must satisfy the following bounds:

T (L)
l (p, FFT (n),P) = Ω

(
n2

S

)
for 1 ≤ l ≤ L

Also, when n = 2d, there is a pebbling P of the FFT graph F (d) such that the following relations
hold simultaneously when S ≥ 2 log n:

T (L)
l (p, F (d),P) =

O

(
n2

S + n log S
)

l = 1

O
(

n2

S + n log S
log sl−1

)
2 ≤ l ≤ L

552 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

Proof The lower bound follows from Theorem 11.3.1 and Theorem 10.5.5. We show that
the upper bounds can be achieved on F (d) under the I/O limitation simultaneously for
1 ≤ l ≤ L.

The pebbling strategy meeting the lower bounds is based on that used in the proof of
Theorem 10.5.5 to pebble F (d) using S ≤ 2d + 1 pebbles in the red pebble game. The
number of level-1 pebble placements used in that pebbling is given in the statement of
Theorem 10.5.5. A level-2 I/O operation occurs once on each of the 2d outputs and 2d−e

times on each of the 2d inputs of the bottom FFT subgraphs, for a total of 2d(2d−e + 1)
times.

The pebbling for the L-level MHG is patterned after the aforementioned pebbling for
the red pebble game, which is based on the decomposition of Lemma 6.7.4. (See Fig. 11.9.)
Let e be the largest integer such that S ≥ 2e + d − e. Pebble the binary subtrees on

2d−e inputs in the 2e bottom subgraphs F (d−e)
b,m as follows: On an input vertex level-L

pebbles are replaced by pebbles at all levels down to and including the first level. Then level-
1 pebbles are advanced on the subtrees in the order that minimizes the number of level-1
pebbles in the red pebble game. It may be necessary to use pebbles at all levels to make these
advances; however, each vertex in a subtree (of which there are 2d−e+1 − 1) experiences at
most two transitions at each level in the hierarchy. In addition, each vertex in a bottom
tree is pebbled once with a level-1 pebble in a computation step. Therefore, the number of
level-l transitions on vertices in the subtrees is at most 2d+1(2d−e+1 − 1) for 2 ≤ l ≤ L,
since this pebbling of 2e subtrees is repeated 2d−e times.

Once the inputs to a given subgraph F (e)
t,p have been pebbled, the subgraph itself is

pebbled in the manner indicated in Theorem 11.5.5, using O(e2e/ log sl−1) pebbles at

each level l for 2 ≤ l ≤ L. Since this is done for each of the 2d−e subgraphs F (e)
t,p , it

follows that on the top FFT subgraphs a total of O(e2d/ log sl−1) level-l transitions occur,

2 ≤ l ≤ L. In addition, each vertex in a graph F (e)
t,p is pebbled once with a level-1 pebble

in a computation step.
It follows that at most

T (L)
l (p, F (d),P) = O

(
2d(2d−e+1 − 1) +

e2d

log sl−1

)

level-l I/O operations occur for 2 ≤ l ≤ L, as well as

T (L)
1 (p, F (d),P) = O(2d(2d−e+1 − 1) + e2d)

computation steps. It is left to the reader to verify that 2e < 2e+d−e ≤ S < 2e+1+d−e−
1 ≤ 42e when e + 1 ≥ log d (this is implied by S ≥ 2d), from which the result follows.

11.5.4 Convolution
The convolution function f (n,m)

conv : Rn+m -→ Rn+m−1 over a commutative ring R (see
Section 6.7.4) maps an n-tuple a and an m-tuple b onto an (n + m − 1)-tuple c and is
denoted c = a ⊗ b. An efficient straight-line program for the convolution is described in
Section 6.7.4 that uses the convolution theorem (Theorem 6.7.2) and the FFT algorithm.
The convolution theorem in terms of the 2n-point DFT and its inverse is

a ⊗ b = F−1
2n (F2n(a) × F2n(b))

c©John E Savage 11.5 Tradeoffs Between Space and I/O Time 553

Obviously, when n = 2d the 2n-point DFT can be realized by the 2n-point FFT. The DAG
associated with this algorithm, shown in Fig. 11.11 for d = 4, contains three copies of the
FFT graph F (2d).

We derive bounds on the computation and I/O time in the standard and I/O-limited
memory-hierarchy game needed for the convolution function using this straight-line program.
For the standard MHG, we invoke the lower bounds and an efficient algorithm for the FFT.
For the I/O-limited MHG, we derive new lower bounds based on those for two back-to-back
FFT graphs as well as upper bounds based on the I/O-limited pebbling algorithm given in
Theorem 11.5.4 for FFT graphs.

THEOREM 11.5.7 Let G(n)
convolve be the graph of a straight-line program for the convolution of

two n-tuples using the convolution theorem, n = 2d. Let G(n)
convolve be pebbled in the standard

MHG with the resource vector p. Let sl =
∑l

j=1 pj and let k be the largest integer such that

sk ≤ n. When p1 ≥ 3 there is a pebbling of G(n)
convolve for which the following bounds hold

simultaneously:

T (L)
l (p, F (d)) =

Θ(n log n) l = 1

Θ
(

n log n
log sl−1

)
2 ≤ l ≤ k + 1

Θ(n) k + 2 ≤ l ≤ L

Proof The lower bound follows from Lemma 11.3.2 and Theorem 11.5.5. From the for-
mer, it is sufficient to derive lower bounds for a subgraph of a graph. Since F (d) is contained

in G(n)
convolve, the lower bound follows.

Figure 11.11 A DAG for the graph of the convolution theorem on n = 8 inputs.

554 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

The upper bound follows from Theorem 11.5.5. We advance level-L pebbles to the
outputs of each of the two bottom FFT graphs F (2d) in Fig. 11.11 and then pebble the top
FFT graph. The number of I/O and computation steps used is triple that used to pebble
one such FFT graph. In addition, we perform O(n) I/O and computation steps to combine
inputs to the top FFT graph.

The bounds for the I/O-limited version of the MHG for the convolution problem are
considerably larger than those for the standard MHG. They have a much stronger dependence
on S and n than do those for the FFT graph.

THEOREM 11.5.8 Let H(n)
convolve be the graph of any DAG for the convolution of two n-tuples

using the convolution theorem, n = 2d. Let H(n)
convolve be pebbled in the I/O-limited MHG

with the resource vector p and let sl =
∑l

j=1 pj . If S = sL−1 ≤ n, then the time to pebble

H(n)
convolve at the lth level, T (L)

l (p, H(n)
convolve), satisfies the following lower bounds simultaneously

for 1 ≤ l ≤ L:

T (L)
l (p, H(n)

convolve) = Ω

(
n3

S2

)

when S ≤ n/ log n.

Proof A lower bound is derived for this problem by considering a generalization of the
graph shown in Fig. 11.11 in which the three copies of the FFT graph F (2d) are replaced by
an arbitrary DAG for the DFT. This could in principle yield in a smaller lower bound on the
time to pebble the graph. We then invoke Lemma 11.3.2 to show that a lower bound can
be derived from a reduction of this new graph, namely, that consisting of two back-to-back
DFT graphs obtained by deleting one of the bottom FFT graphs. We then derive a lower
bound on the time to pebble this graph with the red pebble game and use it together with
Theorem 11.3.1 to derive the lower bounds mentioned above.

Consider pebbling two back-to-back DAGs for the DFT on n inputs, n even, in the red
pebble game. From Lemma 10.5.4, the n-point DFT function is (2, n, n, n/2)-indepen-
dent. From the definition of the independence property (see Definition 10.4.2), we know
that during a time interval in which 2(S + 1) of the n outputs of the second DFT DAG
on n-inputs are pebbled, at least n/2 − 2(S + 1) of its inputs are pebbled. In a back-to-
back DFT graph these inputs are also outputs of the first DFT graph. It follows that for
each group of 2(S + 1) of these n/2 − 2(S + 1) outputs of the first DFT DAG, at least
n/2 − 2(S + 1) of its inputs are pebbled. Thus, to pebble a group of 2(S + 1) outputs
of the second FFT DAG (of which there are at least 0n/(2(S + 1))1 groups), at least
0(n/2− 2(S + 1))/2(S + 1)1(n/2− 2(S + 1)) inputs of the first DFT must be pebbled.

Thus, T (L)
l (p, H(n)

convolve) ≥ n3/(64(S + 1)2), since it holds both when S ≤ n/4
√

2 and
when S > n/4

√
2.

Let’s now consider a pebbling strategy that achieves this lower bound up to a multiplica-
tive constant. The pebbling strategy of Theorem 11.5.5 can be used for this problem. It
represents the FFT graph F (d) as a set of FFT graphs F (e) on top and a set of FFT graphs
F (d−e) on the bottom. Outputs of one copy of F (e) are pebbled from left to right. This
requires pebbling inputs of F (d) from left to right once. To pebble all outputs of F (d), 2d−e

copies of F (e) are pebbled and the 2d inputs to F (d) are pebbled 2d−e times.

c©John E Savage 11.6 Block I/O in the MHG 555

Figure 11.12 An I/O-limited pebbling of a DAG for the convolution theorem showing the
placement of eight pebbles.

Consider the graph G(n/2)
convolve consisting of three copies of F (d), two on the bottom and

one on top, as shown in Fig. 11.12. Using the above strategy, we pebble the outputs of the
two bottom copies of F (d) from left to right in parallel a total of 2d−e times. The outputs
of these two graphs are pebbled in synchrony with the pebbling of the top copy of F (d). It
follows that the number of I/O and computation steps used on the bottom copies of F (d)

in G(n/2)
convolve is 2(2d−e) times the number on one copy, with twice as many pebbles at each

level plus the number of such steps on the top copy of F (d). It follows that G(n/2)
convolve can

be pebbled with three times the number of pebbles at each level as can F (d), with O(2d−e)
times as many steps at each level. The conclusion of the theorem follows from manipulation
of terms.

The bounds given above also apply to some permutation and merging networks. Since,
as shown in Section 6.8, the graph of Batcher’s bitonic merging network is an FFT graph,
the bounds on I/O and computation time given earlier for the FFT also apply to it. Also, as
shown in Section 7.8.2, since a permutation network can be constructed of two FFT graphs
connected back-to-back, the lower bounds for convolution apply to this graph. (See the proofs
of Theorems 11.5.7 and 11.5.8.) The same order-of-magnitude upper bounds follow from
constructions that differ only in details from those given in these theorems.

11.6 Block I/O in the MHG
Many memory units move data in large blocks, not in individual words, as generally assumed
in the above sections. (Note, however, that one pebble can carry a block of data.) Data is
moved in blocks because the time to fetch one word and a block of words is typically about the

556 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

Controller

Disk

In Out

Sector of a
CylinderDisk Rotation

Head Movement

Figure 11.13 A disk unit with three platters and two heads per disk. Each track is divided into
four sectors and heads move in and out on a common arm. The memory of the disk controller
holds the contents of one track on one disk.

same. Figure 11.13 suggests why this is so. A disk spinning at 3,600 rpm that has 40 sectors
per track and 512 bits per sector (its block size) requires about 10 msec to find data in the track
under the head. However, the time to read one sector of 64 bytes (512 bits) is just .42 msec.

To model this phenomenon, we assume that the time to access k disk sectors with con-
secutive addresses is α + kβ, where α is a large constant and β is a small one. (This topic is
also discussed in Section 7.3.) Given the ratio of α to β, it makes sense to move data to and
from a disk in blocks of size about equal to the number of bytes on a track. Some operating
systems move data in track-sized blocks, whereas others move them in smaller units, relying
upon the fact that a disk controller typically keeps the contents of its current track in a fast
random-access memory so that successive sector accesses can be done quickly.

The gross characteristics of disks described by the above assumption hold for other storage
devices as well, although the relative values of the constants differ. For example, in the case of a
tape unit, advancing the tape head to the first word in a consecutive sequence of words usually
takes a long time, but successive words can be read relatively quickly.

The situation with interleaved random-access memory is similar, although the physi-
cal arrangement of memory is radically different. As depicted in Fig. 11.14, an interleaved
random-access memory is a collection of 2r memory modules, r ≥ 1, each containing 2k

b-bit words. Such a memory can simulate a single 2r+k-word b-bit random-access memory.
Words with addresses 0, 2r, 2 2r, 3 2r, . . . , 2k−12r are stored in the first module, words with
addresses 1, 2r + 1, 2 2r + 1, 3 2r + 1, . . . , 2k−12r + 1 in the second module, and words with
addresses 2r − 1, 2 2r − 1, 3 2r − 1, 4 2r − 1, . . . , 2r+k − 1 in the last module.

To access a word in this memory, the high order k bits are provided to each module. If
a set of words is to be read, the words with these common high-order bits are copied to the
registers. If a set of words is to be written, new values are copied from the registers to them.

When an interleaved memory is used to simulate a much faster random-access memory,
a CPU writes to or reads from the 2r registers serially, whereas data is transferred in parallel
between the registers and the modules. The use of two sets of registers (double buffering)

c©John E Savage 11.6 Block I/O in the MHG 557

...

110101100011010001000

a

r
d

111

Double-Buffered Registers

Memory Modules

1111

0000
d

Figure 11.14 Eight interleaved memory modules with double buffering. Addresses are supplied
in parallel while data is pipelined into and out of the memory.

allows the register sets to be alternated so that data can be moved continuously between the
CPU and the modules. This allows the interleaved memory to be about 2r times slower than
the CPU and yet, with a small set of fast registers, appear to be as fast as the CPU. This works
only if the program accessing memory does not branch to a new set of words. If it does, the
startup time to access a new word is about 2r times the CPU speed. Thus, an interleaved
random-access memory also requires time of the form α+ kβ to access k words. For example,
for a moderately fast random-access chip technology α might be 80 nanoseconds whereas β
might be 10 nanoseconds, a ratio of 8 to 1.

This discussion justifies assuming that the time to move k words with consecutive addresses
to and from the lth unit in the memory hierarchy is αl + kβl for positive constants αl and
βl, where αl is typically much larger than βl. If k = bl =)αl/βl*, then αl + kβl ≈ 2αl

and the time to retrieve one item and bl items is about the same. Thus, efficiency dictates that
items should be fetched in blocks, especially if all or most of the items in a block can be used if
one of them is used. This justifies the block-I/O model described below. Here we let tl be the
time to move a block at level l. We add the requirement that data stored together be retrieved
together to reflect physical constraints existing in practice.

DEFINITION 11.6.1 (Block-I/O Model) At the lth level in a memory hierarchy, I/O operations
are performed on blocks. The block size and the time in seconds to access a block at the lth level are
bl and tl, respectively. For each l, bl/bl−1 is an integer. In addition, any data written as part of a
block at level l must be read into level l − 1 by reading the entire block in which it was stored.

The lower bounds on the number of I/O steps given in Section 11.5 can be generalized to
the block-I/O case by dividing the number of I/O operations by the size bl of blocks moving
between levels l − 1 and l. This lower bound can be achieved for matrix-vector and matrix-
matrix multiplication because data is always written to and read from the higher-level memory
in the same way for these problems. (See Problems 11.13 and 11.14.)

558 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

For the FFT graph in the standard MHG, instead of pebbling FFT subgraphs on 2dr

inputs, we pebble bl FFT subgraphs on 2dr/bl inputs (assuming that bl is a power of 2).
Doing so allows all the data moving back and forth in blocks between memories to be used
and accommodates the transposition mentioned at the beginning of Section 11.5.3. This
provides an upper bound of O(n log n/(bl−1 log(sl−1/bl−1))) on the I/O time at level l.
Clearly, when bl−1 is much smaller than sl−1, say bl−1 = O(

√
sl−1), the upper and lower

bounds match to within a multiplicative factor. (This follows because we divide n by bl−1 and
log bl−1 = O(log sl−1).) These observations apply to the FFT-based problems as well.

11.7 Simulating a Fast Memory in the MHG
In this section we revisit the discussion of Section 11.1.2, taking into account that a memory
hierarchy may have many levels and that data is moved in blocks.

We ask the question, “How do we assess the effectiveness of a memory hierarchy on a
particular problem?” For several problems we have upper and lower bounds on their number of
computation and I/O steps in memory hierarchies parameterized by block sizes and numbers of
storage locations. If we add to this mix the time to move a block between levels, we can derive
bounds on the time for all computation and I/O steps. We then ask under what conditions
this time is the best possible. Since data must typically be stored and retrieved from archival
memory, we cannot expect the performance to exceed that of a two-level hierarchy (modeled
by the red-blue pebble game) in which all the available storage locations, except for those in
the archival memory, are in first-level storage. For this reason we use the two-level memory
as our reference model. We now define these terms and state a condition for optimality of a
pebbling strategy.

For 1 ≤ l ≤ L−1 we let tl be the time to move one block of bl words between levels l−1
and l of a memory hierarchy, measured as a multiple of the time to perform one computation
step. Thus, the time for one computation step is t1 = 1.

Let P be a pebbling strategy for a graph G in the L-level MHG that uses the resource
vector p = (p1, p2, . . . , pL−1) (pl pebbles are used at the lth level) and moves data in blocks
of size specified by b = (b2, b3, . . . , bL) (bl words are moved between levels (l− 1) and l). Let

T (L)
l (p, b, G) denote the number of level-l I/O operations with P on G. We define the time

for the pebbling strategy P , T (P , G) on the graph G as

T (P , G) =
L∑

l=1

tl · T (L)
l (p, b, G)

Thus, T (P , G) measures the absolute time expended to pebble a graph relative to the time
to perform one computation step under the assumption that I/O operations cannot be over-
lapped.

From the above discussion, a pebbling is efficient if T (P , G) is at most some small multiple

of T (2)
1 (sL−1, G), the normalized time to pebble G in the red-blue pebble game when all the

pebbles at level L − 1 or less in the MHG (there are sL−1 such pebbles) are used as if they
were red pebbles.

A two-level computation exhibits locality of reference if it is likely in the near future
to refer to words currently in its primary memory. Such computations perform fewer I/O
operations than those that don’t meet this condition. This idea extends to multiple levels: a

c©John E Savage 11.8 RAM-Based I/O Models 559

multi-level memory hierarchy exhibits locality of reference if it uses its higher-level memory
units much less often that its lower-level units. Formally, we say that a pebbling strategy P is
c-local if T (P , G) satisfies the following inequality:

L∑

l=1

tl · T (L)
l (p, b, G,P) ≤ c T (2)

1 (sL−1, G)

The definition of a c-local pebbling strategy is illustrated by the results for matrix multipli-
cation in the standard MHG when block I/O is not used. Let k be the largest integer such that
sk ≤ 3n2. From Theorem 11.5.3 for matrix-matrix multiplication, we see that there exists an
optimal pebbling if

k∑

l=2

tl
bl
√

sl−1
+

L∑

l=k+1

tl
nbl

≤ c∗ (11.1)

for some c∗ > 0 since T (2)
1 (S, G) = Θ(n3).

We noted in Section 11.1.2 that the imbalance between the computation and I/O times
for matrix multiplication is becoming ever more serious with the advance of technology. We
re-examine this issue in light of the above condition. Consider the case in which k + 1 = L;
that is, the highest-level memory is used to store the arguments and results of a computation.
In this case the second term on the left-hand side of (11.1) is a relative measure of the time
to bring data into lower-level memories from the highest-level memory. It is negligible when
nbL is large. For example, if tL = 2,000,000 and bL = 10,000, say, then n must be at least
200, a modest-sized matrix. The first term on the left-hand side reflects the number of times
data moves between the levels of the hierarchy holding the data. It is small when bl

√
sl−1

is large by comparison with tl for 2 ≤ l ≤ k, a condition that is not hard to meet. For
example, if sl−1 = 32 × 106 (about 4 Mbytes) and bl = 1,000, then tl must be less than
about 45, a condition that certainly applies to low level memories such as today’s random-
access memories. Problems 11.15 and 11.16 provide opportunities to explore this issue with
the FFT and convolution.

11.8 RAM-Based I/O Models
The MHG assumes that computations are done by pebbling the vertices of a directed acyclic
graph. That is, it assumes that computations are straight-line. While the best known algo-
rithms for the problems studied earlier in this chapter are straight-line, some problems are not
efficiently done in a straight-line fashion. For example, binary search in a tree that holds a set
of keys in sorted order (see Section 11.9.1) is much better suited to data-dependent compu-
tation of the kind allowed by an unrestricted RAM. Similarly, the merging of two sorted lists
can be done more efficiently on a RAM than with a straight-line program. For this reason
we consider RAM-based I/O models, specifically the block-transfer model and the hierarchical
memory model.

11.8.1 The Block-Transfer Model
The block-transfer model is a two-level I/O model that generalizes the red-blue pebble game
to RAM-based computations by allowing programs that are not straight-line.

560 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

DEFINITION 11.8.1 The block-transfer model (BTM) is a serial computer in which a CPU is
attached to an M -word primary memory and to a secondary memory of unlimited size that stores
words in blocks of size B. Words are moved in blocks between the memories and words that leave
primary memory in one block must return in that block. An I/O operation is the movement of a
block to or from secondary memory. The I/O time with the BTM is the number of I/O operations.

The secondary memory in the BTM can be a main memory if the primary memory is a
cache, or can be a disk if the primary memory is a random-access memory. In fact, it can model
I/O operations between any two devices. Since a block can be viewed as the contents of one
track of a disk, the time to retrieve any word on the track is comparable to the time to retrieve
the entire track. (See Section 11.6.) Since data is moved in blocks in the BTM, it makes sense
to define simple I/O operations.

DEFINITION 11.8.2 An I/O operation in the BTM is simple if, after a block or word is copied
from one memory to the other, the copy in the first memory is deleted.

Simple I/O operations for the pebble game are defined in Problem 11.10. In this problem
the reader is asked to show that replacing all I/O operations with simple I/O operations has
the effect of at most doubling the number of I/O operations. The proof of this fact applies
equally well to the BTM.

We illustrate the use of the block-transfer model by examining the sorting problem. We
derive a lower bound on the I/O time for all sorting algorithms and exhibit a sorting algorithm
that meets the lower bound, up to a constant multiplicative factor. To derive the lower bound,
we limit the range of sorting algorithms to those based on the comparison of keys, as stated
below. (Sorting algorithms that are not comparison-based, such as the various forms of radix
sort, assume that keys consist of individual digits and that digits are used to classify keys.)

ASSUMPTION 11.8.1 All words to be sorted are located initially in the secondary memory. The
compare-exchange operation is the only operation available to implement sorting algorithms on
the BTM. In addition, an arbitrary permutation of the contents of the primary memory of the BTM
can be done during the time required for one I/O operation.

The assumption that the CPU can perform an arbitrary permutation on the contents of the
primary memory during one I/O operation acknowledges that I/O operations take a very long
time relative to CPU instructions.

Algorithms consistent with these assumptions are described by the multiway decision trees
discussed below. They are a generalization of the binary decision tree, a binary tree in which
each vertex has associated with it a comparison between two variables. For example, if keys x1

and x2 are compared at the root vertex, the comparison has two outcomes, namely x1 < x2 or
x1 ≥ x2, which are associated with the subtrees to the left and right of the root, respectively.
Similar comparisons and outcomes are possible at each vertex of these two subtrees. A sequence
of comparisons terminates on a leaf node.

Since a binary decision tree captures each of the data-dependent comparisons between keys
in comparison-based sorting algorithm, each leaf is associated with the permutation of the
original sequence of variables that puts the sequence into sorted order. Thus, a binary decision
tree for sorting must have at least n! distinct leaves, one for every permutation of n items. The
length of a path through a binary decision tree is the number of comparisons performed on the
particular input, and the length of the longest path is a measure of the worst-case number of

c©John E Savage 11.8 RAM-Based I/O Models 561

comparisons. A binary tree with N leaves has a longest path of length at least log2 N because
if it were smaller, it would have fewer than 2log2 N < N leaves. Since the length of the longest
path is an integer, it must be at least)log2 N*. We summarize this result as a lemma that uses
the lower bound on n! given in Problem 2.23.

LEMMA 11.8.1 The length of the longest path in a binary decision tree that sorts n inputs is at
least)log2 n!* = Θ(n log n).

The multiway decision tree in Fig. 11.15 extends the above concept by permitting multi-
ple comparisons at each vertex. 2k outcomes are possible if k comparisons of variable pairs are
associated with each vertex.

THEOREM 11.8.1 Let B divide M and M divide n. Under Assumption 11.8.1 on the BTM,
in the worst case the number of block I/O steps to sort a set of n records using M words of primary
memory and block size B, TBTMsort(n), satisfies the following bounds for B ≤ M/2 and M
large:

TBTMsort(n) = Θ

(
max

[
n

B
,
(n/B) log(n/B)

log(M/B)

])

Proof Let’s now apply the multiway decision tree to the BTM. Since each path in such a tree
corresponds to a sequence of comparisons by the CPU, the tree must have at least n! leaves.
To complete the lower-bound derivation we need to determine the number of descendants
of vertices in the multiway tree.

Initially the n unsorted words are stored in n/B blocks in the secondary memory. The
first time one of these blocks is moved to the primary memory, up to B! permutations
can be performed on the words in it. No more permutations are possible between these
words no matter how many times they are simultaneously in primary memory, even if they
return to the memory as members of different blocks. When a block of B words arrives in
the M -word memory, the number of possible permutations between them (given that the
order among the M − B words originally in the memory has previously been taken into

2 > 32 ≤ 3 2 > 32 ≤ 3
3 > 5 3 ≤ 5 3 > 5

x3 : x5

3 ≤ 5

x2 : x3

x3 : x4

x2 : x4

x2 : x4

x2 : x5

x1 : x3

x3 : x4

x1 : x3

x1 : x5

Figure 11.15 A multiway decision tree in which multiple comparisons of keys are made at each
vertex.

562 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

account, as has the order among the B words in a block) is at most ρ =
(M

B

)
, the binomial

coefficient. (To see this, observe that places for the B new (and indistinguishable) words in
the primary memory can be any B of the M indistinguishable places.) It follows that the
multi-comparison decision tree for every BTM comparison-based sorting algorithm on the
BTM has at most n/B vertices with at most ρB! possible outcomes (vertices corresponding
to the first arrival of one of the blocks in primary memory) and that each of the other vertices
has at most ρ outcomes.

It follows that if a sorting algorithm executes TBTMsort(n) block I/O steps, the function
TBTMsort(n) must satisfy the following inequality:

(B!)n/B

(
M

B

)TBTMsort(n)

≥ n!

Using the approximation to n! given in Lemma 11.8.1, the upper bound of (M/B)BeB on(M
B

)
derived in Lemma 10.12.1, and the fact that T ≥ n/B, we have the desired conclusion.

An upper bound is obtained by extending the standard merging algorithm to blocks of
keys. The merging algorithm is divided into phases, an initialization phase and merging
phases, each of which takes (2n/B) I/O operations. In the initialization phase, a set of
n/M sorted sublists of M keys or M/B blocks is formed by bringing groups of M keys into
primary memory, sorting, and then writing them out to secondary memory. In a merging
phase, M/B sorted sublists of L blocks (L = M/B in the first merging phase) are merged
into one sorted sublist of ML/B blocks, as suggested in Fig. 11.16. The first block of keys
(those with the smallest values) in each sublist is brought into memory and the B smallest
keys in this set is written out to the new sorted sublist that is being constructed. If any
block from an input sublist is depleted, the next block from that list is brought in. There
is always sufficient space in primary memory to do this. Thus, after k phases the sorted
sublists contain (M/B)k blocks. When (M/B)k ≥ n/B, the merging is done. Thus,
(2n/B))log2(n/B)/ log2(M/B)* I/O operations are performed by this algorithm.

...
Memory

B

M/B

LLPrimary L

Secondary Memory

Secondary Memory

...
Figure 11.16 The state of the block merging algorithm after merging four blocks. The algo-
rithm merges M/B sublists, each containing L blocks of B keys.

c©John E Savage 11.9 The Hierarchical Memory Model 563

Similar results can be obtained for the permutation networks defined in Section 7.8.2 (see
Problem 11.18), the FFT defined in Section 6.7.3 (see Problem 11.19), and matrix transposi-
tion defined in Section 6.5.4 (see [9]).

11.9 The Hierarchical Memory Model
In this section we define the hierarchical memory model and derive bounds on the time to do
matrix multiplication, the FFT and binary search in this model. These results provide another
opportunity to evaluate the performance of memory hierarchies, this time with a single cost
function applied to memory accesses at all levels of a hierarchy. We make use of lower bounds
derived earlier in this chapter.

DEFINITION 11.9.1 The hierarchical memory model (HMM) is a serial computer in which a
CPU without registers is attached to a random-access memory of unlimited size for which the time
to access location a for reading or writing is the value of a monotone nondecreasing cost function
ν(a) : -→ from the integers = {0, 1, 2, 3, . . .} to . The cost of computing
f (n) : An -→ Am with the HMM using the cost function ν(a), Kν(f), is defined as

Kν(f) = max
x

T (x)∑

j=1

ν(aj) (11.2)

where aj , 1 ≤ j ≤ T (x), is the address accessed by the CPU on the jth computational step and
T (x) is the number of steps when the input is x.

The HMM with cost function ν(a) = 1 is the standard random-access machine described
in Section 3.4. While in principle the HMM can model many of the details of the MHG, it
is more difficult to make explicit the dependence of ν(a) on the amount of memory at each
level in the hierarchy as well as the time for a memory access in seconds at that level. Even
though the HMM can model programs with branching and looping, following [7] we assume
straight-line programs when studying the FFT and matrix-matrix multiplication problems with
this model.

Let n(f , x, a) be the number of times that address a is accessed in the HMM for f on
input x. It follows that the cost Kν(f) can be expressed as follows:

Kν(f) = max
x

∑

1≤a

n(f , x, a)ν(a) (11.3)

Many cost functions have been studied in the HMM, including ν(a) =)log2 a*, ν(a) =
aα, and ν(a) = Um(a), where Um(a) is the following threshold function with threshold m:

Um(a) =

{
1 a ≥ m

0 otherwise

It follows that

KUm(f) = max
x

∑

m≤a

n(f , x, a)

564 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

For the matrix-matrix multiplication and FFT problems, the cost KUm(f) of computing f is
directly related to the number of I/O operations with the red-blue pebble game played with
S = m red pebbles discussed in Sections 11.5.2 and 11.5.3. For this reason we call this cost
I/O complexity. The principal difference is that in the HMM no cost is assessed for data
stored in the first m memory locations.

Let the differential cost function ∆ν(a) be defined as

∆ν(a) = ν(a) − ν(a − 1)

As a consequence, we can write ν(a) as follows if we set ν(−1) = 0:

ν(a) =
∑

0≤b≤a

∆ν(b) (11.4)

Since ν(a) is a monotone nondecreasing function, ∆ν(m) is nonnegative.
Rewriting (11.3) using (11.4), we have

Kν(f) = max
x

∑

1≤a

n(f , x, a)
∑

0≤b≤a

∆ν(b)

=

[
max
x

∞∑

c=0

∆ν(c)
∞∑

d=c

n(f , x, d)

]

=
∞∑

c=0

∆ν(c)

[
max
x

∞∑

d=c

n(f , x, d)

]
(11.5)

=
∞∑

c=0

∆ν(c)KUc(f)

11.9.1 Lower Bounds for the HMM
Before deriving bounds on the cost to do a variety of tasks in the HMM, we introduce the
binary search problem.

A binary tree is a tree in which each vertex has either one or two descendants except leaf
vertices, which have none. (See Fig. 11.17.) Also, every vertex except the root vertex has one

7 113

6 13

9

20158

17

51

Figure 11.17 A binary search tree.

c©John E Savage 11.9 The Hierarchical Memory Model 565

parent vertex. The length of a path in a tree is the number of edges on that path. The
left (right) subtree of a vertex is the subtree that is detached by removing the left (right)
descending edge. A binary search tree is a binary tree that has one key at each vertex. (This
definition assumes that all the keys in the tree are distinct.) The value of this one key is larger
than that of all keys in the left subtree, if any, and smaller than all keys in the right subtree, if
any. A balanced binary search tree is a binary search tree in which all paths have length k or
k + 1 for some integer k.

LEMMA 11.9.1 The length of the longest path in a binary tree with n vertices is at least)log2(n+
1)/2*.

Proof A longest path in a binary tree with n vertices is smallest when all levels in the tree
are full except possibly for the bottom level. If such a tree has a longest path of length l, it
has between 2l and 2l+1 − 1 vertices. It follows that the longest path in a binary search tree
containing n keys is at least)log2(n + 1)/2*.

The binary search procedure searches a binary search tree for a key value v. It compares
v against the root value, stopping if they are equal. If they are not equal and v is less than the
key at the root, the search resumes at the root vertex of the left subtree. Otherwise, it resumes
at the root of the right subtree. The procedure also stops when a leaf vertex is reached.

We can now state bounds on the cost on the HMM for the logarithmic cost function
ν(a) =)log2 a*. This function applies when the memory hierarchy is organized as a binary
tree in which the low-indexed memory locations are located closest to the roots and the time
to retrieve an item is proportional to the number of edges between it and the root. We use it
to illustrate the techniques developed in the previous section.

Theorem 11.9.1 states lower performance bounds for straight-line algorithms. Thus, the
computation time is independent of the particular argument of the function f provided as
input. Matching upper bounds are derived in the following section. (The logarithmic cost
function is polynomially bounded.)

THEOREM 11.9.1 The cost function ν(a) =)log2 a* on the HMM for the n × n matrix

multiplication function f (n)
A×B realized by the classical algorithm, the n-point FFT associated with

the graph F (d), n = 2d, comparison-based sorting on n keys f (n)
sort, and binary search on n keys,

f (n)
BS , satisfies the following lower bounds:

Matrix multiplication: Kν(f (n)
A×B) = Ω(n3)

Fast Fourier transform: Kν(F (d)) = Ω(n log n log log n)

Comparison-based sorting: Kν(f (n)
sort) = Ω(n log n log log n)

Binary search: Kν(f (n)
BS) = Ω(log2 n)

Proof The lower bounds for the logarithmic cost function ν(a) =)log2 a* use the fact
that ∆ν(a) = 1 when a = 2k for some integer k but is otherwise 0. It follows from (11.5)

566 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

that

Kν(f) =
t∑

k=1

KU2k (f) (11.6)

for the task characterized by f , where t satisfies 2t ≤ N and N is the space used by task.
N = 2n2 for n× n matrix multiplication, N = n for the FFT graph F (d), and N = n for
binary search.

In Theorem 11.5.3 it was shown that the number of I/O operations to perform n × n
matrix multiplication with the classical algorithm is Ω(n3/

√
m). The model of this theorem

assumes that none of the inputs are in the primary memory, the equivalent of the first m
memory locations in the HMM.

Since no charge is assessed by the Um(a) cost function for data in the first m memory
locations, a lower bound on cost with this measure can be obtained from the lower bound
obtained with the red-blue pebble game by subtracting m to take into account the first m
I/O operations that need not be performed.

Thus for matrix multiplication, KUm(f (n)
A×B) = Ω

(
(n3/

√
m) − m

)
. Since

(
n3/

√
m

)
− m ≥ (

√
8 − 1)n3/

√
8m

when m ≤ n2/2, it follows from (11.6) that Kν(f (n)
A×B) = Ω(n3) because

∑t
k=0 n3/2k =

Ω(n3).
For the same reason, KUm(F (d)) = Ω ((n log n)/ log m − m) (see Theorem 11.5.5)

and (n log n/ log m) − m ≥ n log n/(2 log m) for m ≤ n/2. It follows that Kν(F (d))
satisfies

Kν(F (d)) = Ω

(
∑

k

n log n

log(2k)

)

= Ω

(
log n∑

k=1

n log n

k

)
= Ω (n log n log log n)

The last equation follows from the observation that
∑p

k=1 1/k is closely approximated by∫ p
1

1
x dx, which is ln p. (See Problem 11.2.)
The lower bound for comparison-based sorting uses the Ω(n log n/ log m) sorting lower

bound for the BTM with a block size B = 1. Since the BTM assumes that no data are res-
ident in the primary memory before a computation begins, the lower bound for the HMM
cost under the Um cost function is Ω ((n log n/ log m) − m). Thus, the FFT lower bound
applies in this case as well.

Finally, we show that the lower bound for binary search is KUm(f (n)
BS) = Ω(log n −

log m). Each path in the balanced binary search tree has length d =)log(n + 1)/2* or
d− 1. Choose a query path that visits the minimum number of variables located in the first
m memory locations. To make this minimum number as large as possible, place the items
in the first m memory locations as close to the root as possible. They will form a balanced
binary subtree of path length l =)log2(m + 1)/2* or l − 1. Thus no full path will have
more than l edges and l − 1 variables from the first m memory locations. It follows that
there is a path containing at least d− 1− (l− 1) = d− l =)log(n + 1)*−)log(m + 1)*

c©John E Savage 11.10 Competitive Memory Management 567

variables that are not in the first m memory locations. At least one I/O operation is needed
per variable to operate on them. It thus follows that

Kν(f (n)
BS) =

log n∑

d=0

Ω(log n − log(2d))

=
log n∑

d=0

Ω(log n − d)

= Ω(log2 n)

The last inequality is a consequence of the fact that log n − d is greater than (log n)/2 for
d ≤ (log n)/2.

Lower bounds on the I/O complexity for these problems can be derived for a large variety
of cost functions. The reader is asked in Problem 11.20 to derive such bounds for the cost
function ν(a) = aα.

11.9.2 Upper Bounds for the HMM
A natural question in this context is whether these lower bounds can be achieved. We al-
ready know from Theorems 11.5.3 and 11.5.5 that for each allocation of memory to each
memory-hierarchy level, it is possible to match upper and lower bounds on the number of I/O
operations and computation time. As a consequence, for each of these problems near-optimal
solutions exist for any cost function on memory accesses for these problems.

11.10 Competitive Memory Management
The results stated above for the hierarchical memory model assume that the user has explicit
control over the location of data, an assumption that does not apply if storage is allocated by an
operating system. In this section we examine memory management by an operating system
for the HMM model, that is, algorithms that respond to memory requests from programs to
move stored items (instructions and data) up and down the memory hierarchy. We examine
offline and online memory management algorithms. An offline algorithm is one that has
complete knowledge of the future. Online algorithms cannot predict the future and must act
only on the data received up to the present time.

We use competitive analysis, a type of analysis not appearing elsewhere in this book, to
show that the two widely used online page-replacement algorithms, least recently used (LRU)
and first-in, first-out (FIFO), use about twice as many I/O operations as does MIN, the opti-
mal offline page-replacement algorithm, when these two algorithms are allowed to use about
twice as much memory as MIN. Competitive analysis bounds the performance of an online
algorithm in terms of that of the optimum offline algorithm for the problem without knowing
the performance of the optimum algorithm.

Virtual memory-management systems allow the programmer to program for one large
virtual random-access memory, such as that assumed by the HMM, although in reality the
memory contains multiple physical memory units one of which is a fast random-access unit
accessed by the CPU. In such systems the hardware and operating system cooperate to move

568 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

data from secondary storage units to the primary storage unit in pages (a collection of items).
Each reference to a virtual memory location is checked to determine whether or not the refer-
enced item is in primary memory. If so, the virtual address is converted to a physical one and
the item fetched by the CPU. If not (if a page fault occurs), the page containing the virtual
address is moved into primary memory and the tables used to translate virtual addresses are
updated. The item at the virtual address is then fetched. To make room for the newly fetched
page, one page in the fast memory is moved up the memory hierarchy.

A page-replacement algorithm is an algorithm that decides which page to remove from a
full primary memory to make space for a new page. We describe and analyze page-replacement
algorithms for two-level memory hierarchies both because they are important in their own right
and because they are used as building blocks for multi-level page-replacement algorithms. A
two-level hierarchy has primary and secondary memories. Let the primary memory contain n
pages and let the secondary memory be of unlimited size.

The FIFO (first-in, first-out) page-replacement algorithm is widely used because it is sim-
ple to implement. Under this replacement policy, the page replaced is the first page to have
arrived in primary memory. The LRU (least recently used) replacement algorithm requires
keeping for each page the time it was last accessed and then choosing for replacement the page
with the earliest time, an operation that is more expensive to implement than the FIFO shift
register.

Under the optimal two-level page-replacement algorithm, called MIN, primary memory
is initialized with the first n pages to be accessed. MIN replaces the page pi in primary memory
whose time ti of next access is largest. If some other page, pj , were replaced instead of pi, pj

would have to return to the primary memory before pi is next accessed, and one more page
replacement would occur than is required by MIN.

Implementing MIN requires knowledge of the future, a completely unreasonable assump-
tion on the part of the operating system designer. Nonetheless, MIN is very useful as a standard
against which to compare the performance of other page-replacement algorithms such as FIFO
and LRU.

11.10.1 Two-Level Memory-Management Algorithms
To compare the performance of FIFO, LRU, and MIN, we characterize memory use by a
memory-address sequence s = {s1, s2, . . .} of HMM addresses accessed by a computation.
We assume that no memory entries are created or destroyed. We let FFIFO(n, s), FLRU(n, s),
and FMIN(n, s) be the number of page faults with each page-replacement algorithm on the
memory address sequence s when the primary memory holds n pages.

We now bound the performance of the FIFO and LRU page-replacement algorithms in
terms of that of MIN. We show that if the number of pages available to FIFO and LRU
is double the number available to MIN, the number of page faults with FIFO and LRU is
at most about double the number with MIN. It follows that FIFO and LRU are very good
page-replacement algorithms, a result seen in practice.

THEOREM 11.10.1 Let nFIFO, nLRU, and nMIN be the number of primary memory pages used
by the FIFO, LRU, and MIN algorithms. Let nFIFO ≥ nMIN and nLRU ≥ nMIN. Then, for
any memory-address sequence s the following inequalities hold:

FFIFO(nFIFO, s) ≤ nFIFO

nFIFO − nMIN + 1
FMIN(nMIN, s) + nMIN

c©John E Savage Problems 569

FLRU(nLRU, s) ≤ nLRU

nLRU − nMIN + 1
FMIN(nMIN, s) + nMIN

Proof We establish the result for FIFO, leaving it to the reader to show it for LRU. (See
Problem 11.23.) Consider a contiguous subsequence t of s that immediately follows a page
fault under FIFO and during which FIFO makes φFIFO = f ≤ nFIFO page faults. In the
next paragraph we show that at least f different pages are accessed by FIFO during t. Let
MIN make φMIN faults during t. Because MIN has nMIN pages, φMIN ≥ f −nMIN +1 ≥
0. Thus, the ratio of page faults by FIFO and MIN is f/φMIN ≤ f/(f − nMIN + 1).

Let pi be the page on which the fault occurs just before the start of t. To show that at
least f different pages are accessed by FIFO during t, consider the following cases: a) FIFO
faults on pi in t; b) FIFO faults on some other page at least twice in t; and c) neither case
applies. In the first case, FIFO accesses at least nFIFO different pages because if it accessed
fewer, then pi would still be in its primary memory the second time it is accessed. In the
second case, the same statement applies to the page accessed multiple times. In the third
case, FIFO can have only f faults if it accesses at least f different pages during t.

Now subdivide the memory access sequence s into subsequences t0, t1, . . . , tk such that
ti, i ≥ 1, starts immediately after a page fault under FIFO and contains nFIFO faults and
t0 contains at most nFIFO page faults. This set of subsequences can be found by scanning s
backwards. Since MIN makes φMIN

j ≥ nFIFO−nMIN +1 faults on the jth interval, j ≥ 1,

and φMIN
0 ≥ φFIFO

0 −nMIN faults on the zeroth interval (that is, φFIFO
0 ≤ φMIN

0 +nMIN),
the number of faults by FIFO, FFIFO(nFIFO, s) = φFIFO

0 +φFIFO
1 + · · ·+φFIFO

k satisfies
the condition of the theorem because φFIFO

j ≤ nFIFOφMIN
j /(nFIFO − nMIN + 1) for

j ≥ 1.

The upper bounds are almost best possible because, as stated in Problem 11.24, for any
online algorithm A there is a memory-access sequence such that the number of page faults
FA(s) satisfies the following lower bound:

FA(nA, s) ≥ nA

nA − nMIN + 1
FMIN(nMIN, s)

The difference between this lower bound and the upper bounds given for FIFO and LRU
is nMIN, which takes into account for the possibility that the initial entries in the primary
memory of MIN and FIFO can be completely different.

It follows that the FIFO and LRU page-replacement strategies are very effective strategies
for two-level memory hierarchies.

. .

Problems
MATHEMATICAL PRELIMINARIES

11.1 Let a and b be integers satisfying 1 ≤ a ≤ b. Show that b/2 ≤ a0b/a1 ≤ b.

Hint: Consider values of b in the range ka ≤ b ≤ (k + 1)a for k an integer.

11.2 Derive a good lower bound on
∑m

k=1(1/k) of the form Ω(log m) using an approach
similar to that of Problem 2.2.

570 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

PEBBLING MODELS

11.3 Show that the graph of Fig. 11.2 can be completely pebbled in the three-level MHG
with resource vector p = (2, 4) using only four third-level pebbles.

11.4 Consider pebbling a graph with the red-blue game. Suppose that each I/O operation
uses twice as much time as a computation step. Show by example that a red-blue
pebbling minimizing the total time to pebble a graph does not always minimize the
number of I/O operations.

I/O TIME RELATIONSHIPS

11.5 Let Smin be the minimum number of pebbles needed to pebble the graph G = (V , E)
in the red pebble game. Show that if in the MHG a pebbling strategy P uses sk pebbles
at level k or less and sk ≥ Smin + k − 1, then no I/O operations at level k + 1 or
higher are necessary except on input and output vertices of G.

11.6 The rules of the red-blue pebble game suggest that inputs should be prefetched from
high-level memory units early enough that they arrive when needed. Devise a schedule
for delivering inputs so that the number of I/O operations for matrix multiplication is
minimized in the red-blue pebble game.

THE HONG-KUNG LOWER-BOUND METHOD

11.7 Derive an expression for the S-span ρ(S, G) of the binary tree G shown in Fig. 11.4.

11.8 Consider the pyramid graph G on n inputs shown in Fig. 11.18. Determine its S-span
ρ(S, G) as a function of S.

11.9 In Problem 2.3 it is shown that every binary tree with k leaves has k−1 internal vertices.
Show that if t binary trees have a total of p pebbles, at most p − 1 pebbling steps are
possible on these trees from an arbitrary initial placement without re-pebbling inputs.

Hint: The vertices that can be pebbled from an initial placement of pebbles form a set
of binary trees.

11.10 An I/O operation is simple if after a pebble is placed on a vertex the pebble currently
residing on that vertex is removed. Show that at most twice as many I/O operations are
used at each level by the MHG when every I/O operation is simple.

n

Figure 11.18 The pyramid graph.

c©John E Savage Problems 571

Hint: Compare pebble placement with and without the requirement that placements
be simple, arguing that if a pebble removed by a simple I/O operation is needed later it
can be obtained by one simple I/O operation for each of the original I/O operations.

TRADEOFFS IN THE MEMORY HIERARCHIES

11.11 Using the results of Problem 11.8, derive good upper and lower bounds on the I/O
time to pebble the pyramid graph of Fig. 11.18 in terms of n.

11.12 Under the conditions of Problem 11.4, show that any pebbling of a DAG for convolu-
tion of n-sequences with the minimal pebbling strategy when S ≥ Smin and n is large
has much larger total cost than a strategy that treats blue pebbles as red pebbles.

BLOCK I/O IN THE MHG

11.13 Determine how efficiently matrix-vector multiplication can be done in the block-I/O
model described in Section 11.6.

11.14 Show that matrix-matrix multiplication can be done efficiently in the block-I/O model
described in Section 11.6.

SIMULATING FAST MEMORIES

11.15 Determine conditions on a memory hierarchy under which the FFT can be executed
efficiently in the standard MHG. Discuss the extent to which these conditions are likely
to be met in practice.

11.16 Repeat the previous problem for convolution realized by the algorithm stated in the
convolution theorem.

11.17 The definition of a minimal pebbling stated in Section 11.2 assumes that it is much
more expensive to perform a high-level I/O operation than a low-level one. Determine
the extent to which the lower bound of Theorem 11.4.1 depends on this assumption.
Apply your insight to the problem of matrix multiplication of n × n matrices in the
three-level MHG in which s1 < 3n2 and s2 ≥ 3n2. (See Theorem 11.5.3.) Determine
whether increasing the number of level-3 I/O operations affects the number of level-2
I/O operations.

THE BLOCK-TRANSFER MODEL

11.18 Derive a lower bound on the time to realize a permutation network on n inputs in the
block-transfer model.

Hint: Count the number of orderings possible between the n inputs. Base your argu-
ment on the number of orderings within blocks and between elements in the primary
memory, and the number of ways of choosing which block from the secondary memory
to move into the primary memory.

11.19 Derive a lower bound on the time to realize the FFT graph on n inputs in the block-
transfer model.

Hint: Use the result of Section 7.8.2 to argue that an n-point FFT graph cannot have
many fewer vertices than there are switches in a permutation network.

572 Chapter 11 Memory-Hierarchy Tradeoffs Models of Computation

THE HIERARCHICAL MEMORY MODEL

11.20 Derive the following lower bounds on the cost of computing the following functions
when the cost function is ν(a) = aα:

Matrix multiplication: Kν(f (n)
A×B) =

Ω(n2α+2) if α > 1/2

Ω(n3 log n) if α = 1/2

Ω(n3) if α < 1/2

Fast Fourier transform: K(n)
c (F (d)) = Ω(nα+1)

Binary search: Kν(f (n)
BS) = Ω(nα)

Hint: Use the following identity to recast expressions for the computation time:

n∑

k=1

∆g(k)h(k) = −
n−1∑

k=1

∆h(k)g(k + 1) + g(n + 1)h(n)− g(1)h(1)

11.21 A cost function ν(a) is polynomially bounded if for some K > 1 and all a ≥ 1.
ν(2a) ≤ Kν(a). Let the cost function ν(a) be polynomially bounded. Show that
there are positive constants c and d such that ν(a) ≤ cad.

11.22 Derive a good upper bound on the cost to sort in the HMM with the logarithmic cost
function)log a*.

COMPETITIVE MEMORY MANAGEMENT

11.23 By analogy with the proof for FIFO in the proof of Theorem 11.10.1, consider any
memory-address sequence s and a contiguous subsequence t of s that immediately
follows a page fault under LRU and during which LRU makes φLRU = f ≤ nLRU

page faults. Show that at least f different pages are accessed by LRU during t.

11.24 Let A be any online page-replacement algorithm that uses nA pages of primary memory.
Show that there are arbitrarily long memory-address sequences s such that the number
of page faults with A, FA(s), satisfies the following lower bound, where nMIN is the
number of pages used by the optimal algorithm MIN:

FA(s) ≥ nA

nA − nMIN + 1
FMIN(s)

Hint: Design a memory-address sequence s of length nA with the property that the
first nA −nMIN + 1 accesses by A are to pages that are neither in A’s or MIN’s primary
memory. Let S be the nA + 1 pages that are either in MIN’s primary memory initially
or those accessed by A during the first nA −nMIN + 1 accesses. Let the next nMIN − 1
page accesses by A be to pages not in S.

c©John E Savage Chapter Notes 573

Chapter Notes
Hong and Kung [136] introduced the first formal model for the I/O complexity of problems,
the red-blue pebble game, an extension of the pebble game introduced by Paterson and Hewitt
[238]. The analysis of Section 11.1.2 is due to Kung [177]. Hong and Kung derived lower
bounds on the number of I/O operations needed for specific graphs for matrix multiplication
(Theorem 11.5.2), the FFT (Theorem 11.5.4), odd-even transposition sort and a number of
other problems. Savage [294] generalized the red-blue pebble game to the memory-hierarchy
game, simplified the proof of Theorem 11.4.1, and obtained Theorems 11.5.3 and 11.5.5 and
the results of Section 11.3. Lemma 11.5.2 is implicit in the work of Hong and Kung [136];
the simplified proof given here is due to Agrawal and Vitter [9]. The results of Section 11.5.4
are due to Savage [294].

The two-level contiguous block-transfer model of Section 11.8.1 was introduced by Savage
and Vitter [295] in the context of parallel space–time tradeoffs. The analysis of sorting of
Section 11.8.1 is due to Agrawal and Vitter [9]. In this paper they also derive similar bounds
on the I/O time to realize the FFT, permutation networks and matrix transposition.

The hierarchical memory model of Section 11.9 was introduced by Aggarwal, Alpern,
Chandra, and Snir [7]. They studied a number of problems including matrix multiplication,
the FFT, sorting and circuit simulation, and examined logarithmic, linear, and polynomial
cost functions. The two-level bounds of Section 11.10 are due to Sleator and Tarjan [310].
Aggarwal, Alpern, Chandra, and Snir [7] extended this model to multiple levels. The MIN
page-replacement algorithm described in Section 11.10 is due to Belady [35].

Two other I/O models of interest are the BT model and the uniform memory hierarchy.
Aggarwal, Chandra, and Snir [8] introduced the BT model, an extension of the HMM model
supporting block transfers in which a block of size b ending at location x is allowed to move
in time f(x) + b. They establish tight bounds on computation time for problems including
matrix transpose, FFT, and sorting using the cost functions)log x*, x, and xα for 1 ≤ α ≤ 1.

Alpern, Carter, and Feig [18] introduced the uniform memory hierarchy in which the
uth memory has capacity αρ2u, block size ρu, and time ρu/β(u) to move a block between
levels; β(u) is a bandwidth function. They allow I/O overlap between levels and determine
conditions under which matrix transposition, matrix multiplication, and Fourier transforms
can and cannot be done efficiently.

Vitter and Shriver [353] have examined three parallel memory systems in which the mem-
ories are disks with block transfer, of the HMM type, or of the BT type. They present a
randomized version of distribution sort that meets the lower bounds for these models of com-
putation. Nodine and Vitter [231] give an optimal deterministic sorting algorithm for these
memory models.

